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1. Introduction
Direction-Of-Arrival (DOA) estimation is one of significant techniques for high-speed mobile

communication to know wave propagation environment [1]. ”Superresolution” DOA estimation
methods such as MUSIC [2], and ESPRIT [3] methods are paid so much attention because of their
high accuracy in estimating DOAs of incident signals. The accuracy of those DOA estimation
methods is often deteriorated by the mutual coupling among array elements. Therefore we have
to calibrate array elements in order to compensate the mutual coupling in advance but it often
takes time and is difficult to accurately calibrate antenna elements.

To resolve this problem, the MUSIC-based DOA estimation method that compensating
the influence of mutual coupling without actual calibration – called ”Blind Calibration” – has
been proposed [4]. This method can hide mutual coupling coefficients by installing some virtual
elements around Uniform Linear Array (ULA).

In this paper, we expand the formulation of this method to correspond to URA configuration,
and confirm that the blind calibration can work for URA. Also we verify the DOA estimation
accuracy of the blind calibration for ULA through the experiment in anechoic chamber.

2. Signal and Array Model
Assume that L uncorrelated narrowband incident waves s�(t), (� = 1, 2, · · · , L) arrive at

N -element array antenna from the direction of θ�, respectively. We assume AWGN process and
the incident waves are uncorrelated to each other and also to noise signals. The complex input
signal vector x(t) = [x1(t), x2(t), · · · , xK(t)]T , where xk is the input signal at n-th array element,
is written as

x(t) = C
L∑

�=1

s�(t)a(θ�) + n(t) = CAs(t) + n(t), (1)

where a(θ�) = [1, β(θ�), . . . , β(θ�)(N−1)]T denotes the array response vector for �-th wave with
β(θ�) = e(j2πd sin θ�/λ), A = [a(θ1), a(θ2), · · · , a(θL)] is the array response matrix, s(t) =
[s1(t), s2(t), · · · , sL(t)]T is the incident signal vector, and n(t) = [n1(t), n2(t), · · · , nN (t)]T is
the additive noise vector. Note that λ and d(= 0.5λ) denote the wavelength and array interval,
respectively. The N × N matrix C in (1) is given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c1 · · · cP−1 · · · 0

c1 1 c1 · · · . . . 0
... c1 1

. . . · · · cP−1

cP−1 · · · . . . . . . c1
...

0
. . . · · · c1 1 c1

0 · · · cP−1 · · · c1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where P is the number of nonzero mutual coupling coefficients cp.
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3. Blind Calibration
This section briefly reviews the conventional blind calibration approach for ULA [4] and

develop it to correspond to URA configuration.

3. 1 Blind Calibration for ULA [4]

Consider N -element ULA that has mutual coupling as in (2). Mutual coupling coefficients
decrease as array interval becomes longer, and the coupling between two far elements can be
approximated as zero. We add (P − 1) virtual elements at each side of the array to form a new
ULA within the same element space in order to compensate the effect of mutual coupling in an
N -element ULA. Then the output signal of the N -element ULA in the middle of the extended
(N + 2P − 2)-element ULA can be expressed as

x(t) = C̃Ãs(t) + n(t), (3)

where Ã = [ã(θ1), ã(θ2), · · · , ã(θL)] and ã(θ�) = [β(θ�)1−P , · · · , β(θ�)−1, 1, · · · , β(θ�)N+P−1]T . In
(3), C̃ is the mutual couplig matrix for the N -element ULA. Here we calculate C̃ã(θ�) as follows.

C̃ã(θ�) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 1 c1 · · · . . . 0
... c1 1

. . . · · · cP−1

cP−1 · · · . . . . . . c1
...

0
. . . · · · c1 1 c1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1
β(θ�)

...
β(θ�)N−1

⎤
⎥⎥⎥⎥⎦

=

(
2

P−1∑
n=1

cn cos(2nπ sin(θ�)d/λ) + 1

)
a(θ�) = c(θ�)a(θ�), (4)

where c(θ�) is obviously a scalar and dose not affect to the orthogonality between noise subspace
vector ẽn and array responce vector ã. Hence we can estimate DOA by MUSIC method by

P (θ) =
1∣∣∣∣∣∣ẽH

n C̃a(θ)
∣∣∣∣∣∣ =

1∣∣∣∣∣∣c(θ)ẽH
n a(θ)

∣∣∣∣∣∣ =
1∣∣∣∣∣∣ẽH

n a(θ)
∣∣∣∣∣∣ . (5)

3. 2 Blind Calibration for URA

We develop the blind calibration approach to correspond to URA configuration. Suppose a
(2 × 2)-element URA whose mutual coupling coefficients are given by c1 and c2, where c1 and
c2 are coeffisients between the closest and the diagonal elements, respectively, Similarly to the
virtual elements for ULA, we install virtual 12 elements to surround (2 × 2)-element URA and
form (4 × 4)-element URA. Then the mutual coupling matrix for the (2 × 2)-element URA is
written as

C2 =

⎡
⎢⎢⎢⎣

1 c1 c1 c2

c1 1 c2 c1

c1 c2 1 c1

c2 c1 c1 1

⎤
⎥⎥⎥⎦ (6)

Similarly to (4), C̃2ã(φ�, θ�) can be arranged as

C̃2ã(φ�, θ�)

=
[
(e0x+1y + e1x+0y + e1x+2y + e2x+1y)c1 + (e0x+2y + e2x+0y + e2x+2y + 1)c2

]
⎡
⎢⎢⎢⎣

1
e0x+1y

e1x+0y

e1x+1y

⎤
⎥⎥⎥⎦

= c(φ�, θ�)â(φ�, θ�) (7)

where â(φ�, θ�) = [1, e0x+1y, e0x+2y, · · · , e3x+3y] is the array response vector for URA with
emx+ny = ej2π{(m−1)d sin θ� cos φ�+(n−1)d sin θ� sin φ�}/λ. The mutual cupling matrix is reduced into a
scalar as in (7), the blind calibration approach is applicable also to the (2 × 2)-element URA.
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4. Simulation
DOA estimation accuracy is evaluated through some simulation in this section. Specifica-

tions of the simulation are summarized in Table 1.

4. 1 Case of ULA

Consider a 8-element ULA extended from 4-element ULA. Figure 1 shows the SNR depen-
dency of the RMSE for the blind calibration method where the mutual coupling coefficients is
given as c1 = 0.43301 − 0.25j and c2 = 0.14142 − 0.14142j. The number of nonzero mutual
coupling coefficients is P = 3. From Fig. 1, we can see that the DOA estimation accuracy of the
blind calibration method is better than the conventional MUSIC method even for high SNRs.

4. 2 Case of URA

Consider a 4 × 4-element URA extended from 2 × 2-element URA. Figure 2 shows the
SNR dependency of the RMSE for the blind calibration method where the mutual coupling
coefficients is again given as c1 = 0.43301−0.25j and c2 = 0.14142−0.14142j. From Fig. 2, the
DOA estimation accuracy of the blind calibration method with 2 × 2-element in the middle of
4 × 4-element is better than that of MUSIC method of 2 × 2-element and also MUSIC method
of 4× 4-element. Similarly to the result of ULA, we confirm that the blind calibration approach
works effectively also in the case of URA.

5. Experiment
The DOA estimation accuracy of the blind calibration approach is also evaluated through

experiment in anechoic chamber. Table 2 shows the specifications of the experiment, and Figure
3 illustrates the angular dependency of RMSE for ULA. The averaged RMSEs are 0.92 for
MUSIC method with 8 elements, 4.62 for MUSIC method with 4 elements, and 0.49 for the blind
calibration method with 4 actual plus 4 virtual elements. This result confirms the superiority of
the blind calibration approach in actual environment. The RMSE in experiment becomes larger
than that of simulation as seen from Figs. 1 and 3. The reason would be due to the error of
array element interval, and also due to the angular dependency of the coupling coefficients. The
coefficients may depend on DOAs in actual environments and it does not lead Toeplitz matrix
in (2), and finally it makes larger RMSE in experiment. That remains as one of future studies.

6. Concluding Remarks
In this paper, we developed the MUSIC-based blind calibration approach to correspond to

URA. The accuracy of the developed approach was evaluated through simulation and confirmed
that it was superior than that of the conventional MUSIC method. also we verified the DOA
estimation accuracy of the blind calibration for ULA through the experiment in anechoic cham-
ber. We again confirmed that it was superior than that of the conventional MUSIC method also
through experiment. Further improving DOA estimation accuracy is one of future studies.
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Table 1: Specifications of Simulations

array configuration ULA URA
# of original elements 4 2 × 2
# of total elements 8 4 × 4

array element interval 0.5λ
DOA in azimuth 15◦

DOA in elevation 30◦

carrier frequency 2.0GHz
# of snapshots 100

# of trials 100
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Figure 1: SNR dependency of RMSE for ULA
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(a) RMSE for azimuth angle
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(b) RMSE for elevation angle

Figure 2: SNR dependency of RMSE for URA

Table 2: Specifications of experiment

array configuration ULA
# of original elements 4
# of total elements 8

array element interval 0.5λ
DOA in azimuth 0◦ to 60◦

DOA in elevation 90◦

carrier frequency 2.4GHz
# of snapshots 100
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Figure 3: Angle dependency of RMSE
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