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Abstract—The well-known Weierstrass elliptic func-
tions are constructed from an algebraic curve of genus
g = 1, and can be used to solve a number of nonlinear
ordinary differential equations, such as the travelling wave
problem for the KdV equation. As well as the soliton solu-
tion, such methods give periodic solutions of the ODEs.
If the curve is generalised to a higher genus, the corre-
sponding generalised Weierstrass functions give multiple
periodic solutions of many well-known PDEs, such as the
KdV equation (g = 2), the Boussinesq equation (g = 3),
and the Kadomtsev-Petviashvili (KP) equation (g = 6). We
review, very briefly, some of the results in this area.

1. Introduction

The well-known Weierstrass elliptic functions were first
studied in the middle of the 19th century by Abel, Hermite
and Weierstrass. The functions were related to an elliptic
curve, given in standard Weierstrass form as

y2 = 4x3 − g2x − g3, (1)

where g2 and g3 are parameters. We refer to this as the (2,3)
curve. If x and y are considered to be complex variables, the
resulting surface has the shape of a torus, which has genus
g = 1. Associated with the curve (1) is the Weierstrass ℘(u)
function, where the variable u satisfies u =

∫
dx/y, where

dx/y is called a differential of the first kind. The doubly
periodic function ℘(u) satisfies the ODEs(

℘′
)2

= 4℘3 − g2℘ − g3, (2)

℘′′ = 6℘2 −
1
2

g2. (3)

The second ODE follows easily from the first after differen-
tiation and cancellation. Additionally, we have the Weier-
strass σ(u) function, which is is related to ℘ by

℘(u) = −
d2

du2 lnσ(u) (4)

A well-known application of (2) is to the travelling wave
solution of the Korteweg-de Vries (KdV) equation

ut + 6u uu + uxxx = 0, (5)

where the subscripts denote partial differentiation. Putting
u(x, t) = f (x − ct) = f (ζ), we find

−c
d f
dζ

+ 6 f
d f
dζ

+
d3 f
dζ3 = 0. (6)

Integrating with respect to ζ we get, on setting the constant
of integration equal to zero

d2 f
dζ2 + 3 f 2 − c f = 0, (7)

which is just (3) with f = −2℘(u) + c/6, g2 = c2/12.
We discuss below what happens when we generalise the

curve (1) to higher genus curves, with powers of x and y
greater than 2 or 3 respectively. We can then find general-
isations of the ODEs (2) and (3) which are now PDEs in
functions of g variables.

2. Genus 2 case

In genus 2 the relevant curve is hyperelliptic (leading
term in y is y2) (2,5) curve

C : y2 = x5 + µ2x4 + µ4x3 + . . . + µ0. (8)

This case was considered in detail by Baker (1907). σ and
℘ are now functions of g = 2 variables, i.e.

σ = σ(u1, u2) = σ(u)

There are now two differentials of the first kind, dx/y and
x dx/y, and we define u1, u2 by

u1 =

∫ (x1,y1) dx
y

+

∫ (x2,y2) dx
y
, (9)

u2 =

∫ (x1,y1) x dx
y

+

∫ (x2,y2) x dx
y
, (10)

for two variable points (xi, yi) on C.

2.1. Genus 2 PDEs

Now that our function sigma depends on several vari-
ables, we need a new notation corresponding to the 2nd
logarithmic derivative in (4). The generalized ℘ functions
(note more than 1 type!) are defined from the σ function as

℘i j(u1, u2) ≡ −
∂2

∂ui∂u j
lnσ(u1, u2), i = 1, 2. (11)

There is a nice if somewhat complicated expansion for-
mula due to Klein to get the PDE’s, once the curve and the
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differentials have been fixed. In the genus 2 case this gives

℘2222 − 6℘2
22 = 2µ4 + 4µ2℘22 + 4℘12,

℘1222 − 6℘22℘12 = 4µ2℘12 − 2℘11,

℘1122 − 2℘22℘11 − 4℘2
12 = 2µ4℘12,

℘1112 − 6℘11℘12 = 4µ2℘12 − 2µ8℘22 − 4µ10,

℘1111 − 6℘2
11 = µ8℘12 + 4µ6℘11

−12µ10℘22 − 2µ10µ2 − 2µ8µ4.

These are the generalization of ℘′′ − 6℘2 = − 1
2 g2 in genus

one (℘1111 − 6℘2
11 = − 1

2 g2 in our new PDE notation).
If we take the first of these equations, differentiate once

w.r.t. u2, then put u1 = t, u2 = x, ℘22 = −U(x, t), µ2 = 0, we
find

Ut + 12UUx + Uxxx = 0,

which is the KdV equation. Our function ℘22 is hence a
fully two-dimensional multi-periodic solution of the KdV
equation. This result was derived by Baker in 1907 [1],
some 60 years before the discovery of the “modern” multi-
soliton solutions of KdV.

The σ function in the genus 2 case can be expanded in a
power series in u1, u2

σ(u1, u2) = u1 −
1
3

u2
3 −

1
60
µ2u5

2

−
1

1260
(8µ2

2 + µ4)u7
2 +

1
12
µ4u1u4

2 + . . .

The function σ satisfies four linear heat-type equations in
the ui and the µ j, the first of which is

4 µ4
∂σ

∂µ4
+ 6 µ6

∂σ

∂µ6
+ 8 µ8

∂σ

∂µ8
+ 10 µ10

∂σ

∂µ10

= 3 u1
∂σ

∂u1
+ u2

∂σ

∂u2
σ − 3

These heat-type equations can be used to form recurrence
relations satisfied by the coefficients of the sigma expan-
sion.

Many results for the hyperelliptic cases y2 = xs + . . .,
including many general theorems, have been derived in [2].

3. Genus 3

Here we consider only the so-called trigonal genus 3
curve, which is non-hyperelliptic [3]

C : y3 = x4 + µ3x3 + . . . + µ0,

Now all functions are functions of u = (u1, u2, u3), defined
in an analogous way to (9). The resulting ℘ functions com-
ing from this (3,4) curve satisfy a number of PDEs, the first
of which is

℘3333 − 6℘2
33 = −3℘22,

which can be shown to transform to the Boussinesq equa-
tion

Utt − Uxx −
∂

∂x2

(
3u2 + Uxx

)
= 0

The corresponding σ function can again be shown to solve
a set of heat-type equations, which can also be used to form
a recurrence relations for the coefficients of the correspond-
ing sigma expansion.

Similar results have been derived for higher genus trigo-
nal curves y3 = x5 + . . . , y3 = x7 + . . ., etc.

4. Genus 6

In genus 6 a new possibility occurs, the so-called tetrag-
onal (4,5) curve [4]

y4 = x5 + . . . .

Many of the corresponding equations have been worked out
in this case, although things get quite complicated. Now
the ℘ and σ functions are functions of six variables ui, i =

1, . . . , 6. The ℘ functions satisfy a number of PDEs, the
first of which is

℘6666 − 6℘2
66 = 3℘55 + 4℘46. (12)

Differentiating (12) twice with respect to u6 we get

℘666666 = 12
∂

∂u6
℘66℘666 − 3℘5566 + 4℘4666.

Making the substitutions u6 = x, u5 = y, u4 = t,
and U(x, y, t) = ℘66, we get eventually the following
parametrized form of the KP-equation:

(Uxxx − 12UUx − 4Ut)x + 3Uyy = 0.
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