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Abstract—The well-known Weierstrass elliptic func-
tions are constructed from an algebraic curve of genus
g = 1, and can be used to solve a number of nonlinear
ordinary differential equations, such as the travelling wave
problem for the KdV equation. As well as the soliton solu-
tion, such methods give periodic solutions of the ODEs.
If the curve is generalised to a higher genus, the corre-
sponding generalised Weierstrass functions give multiple
periodic solutions of many well-known PDEs, such as the
KdV equation (g = 2), the Boussinesq equation (g = 3),
and the Kadomtsev-Petviashvili (KP) equation (g = 6). We
review, very briefly, some of the results in this area.

1. Introduction

The well-known Weierstrass elliptic functions were first
studied in the middle of the 19th century by Abel, Hermite
and Weierstrass. The functions were related to an elliptic
curve, given in standard Weierstrass form as
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where g, and g3 are parameters. We refer to this as the (2,3)
curve. If x and y are considered to be complex variables, the
resulting surface has the shape of a torus, which has genus
g = 1. Associated with the curve (1) is the Weierstrass p(u)
function, where the variable u satisfies u = f dx/y, where
dx/y is called a differential of the first kind. The doubly
periodic function g(u) satisfies the ODEs

¥ =4x - gox — g3,
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The second ODE follows easily from the first after differen-
tiation and cancellation. Additionally, we have the Weier-
strass o(u) function, which is is related to p by
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p(u) = - dd7 Ino(u) “

A well-known application of (2) is to the travelling wave
solution of the Korteweg-de Vries (KdV) equation

&)

where the subscripts denote partial differentiation. Putting
u(x, 1) = f(x = ct) = f(), we find
T
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U+ Oouuy, + g, =0,

(6)

Integrating with respect to £ we get, on setting the constant
of integration equal to zero

ﬂ+3f2—cf=o,
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which is just (3) with f = —2p(u) + ¢/6, g2 = c*/12.

We discuss below what happens when we generalise the
curve (1) to higher genus curves, with powers of x and y
greater than 2 or 3 respectively. We can then find general-
isations of the ODEs (2) and (3) which are now PDEs in
functions of g variables.

2. Genus 2 case

In genus 2 the relevant curve is hyperelliptic (leading
term in y is y?) (2,5) curve
C: V=X +mx* + x> + ...+ .
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This case was considered in detail by Baker (1907). o and
¢ are now functions of g = 2 variables, i.e.

o =0o(u,up) = o)

There are now two differentials of the first kind, dx/y and
xdx/y, and we define u;, u by
(X2,2) dx
L[
y

f(xlvyl) dx
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for two variable points (x;, y;) on C.
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2.1. Genus 2 PDEs

Now that our function sigma depends on several vari-
ables, we need a new notation corresponding to the 2nd
logarithmic derivative in (4). The generalized g functions
(note more than 1 type!) are defined from the o~ function as
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9ij(u, up) = — Ino(ui,u), i=1,2. (11)

There is a nice if somewhat complicated expansion for-
mula due to Klein to get the PDE’s, once the curve and the
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differentials have been fixed. In the genus 2 case this gives

2ug + 4z + 4912,
4ur 12 — 2911,

§2222 — 65032
91222 — 690p12 =

P12 = 200011 — 497, = 2,
P2 —6pupn = e — 2uspn — 4uo,
P — 697, = Hs@12 + e
—12u10920 — 2p1000 — 2p844.
These are the generalization of ¢ — 6p* = —%gz in genus
one (1111 — 65@%1 = —%gz in our new PDE notation).

If we take the first of these equations, differentiate once
Ww.I.t. up, then put u; = t,uy = x, 92 = -U(x, 1), = 0, we
find

U +120U,+U,,, =0,

which is the KdV equation. Our function ¢,, is hence a
fully two-dimensional multi-periodic solution of the KdV
equation. This result was derived by Baker in 1907 [1],
some 60 years before the discovery of the “modern” multi-
soliton solutions of KdV.

The o function in the genus 2 case can be expanded in a
power series in uy, uy
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The function o satisfies four linear heat-type equations in
the u; and the i, the first of which is

o(u,up) =

oo oo oo oo
dus— +6ug— +8ug— + 10 ujo——
”4(9/14 + /468#6 +oug Buts + ,Uloa#w
o oo
=3ui;— +tup—o -3
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These heat-type equations can be used to form recurrence
relations satisfied by the coefficients of the sigma expan-
sion.

Many results for the hyperelliptic cases y* = x* + ...,
including many general theorems, have been derived in [2].

3. Genus 3

Here we consider only the so-called frigonal genus 3
curve, which is non-hyperelliptic [3]

C: Y=x*+mx+... +puo,

Now all functions are functions of u = (uy, u,, u3), defined
in an analogous way to (9). The resulting ¢ functions com-
ing from this (3,4) curve satisfy a number of PDEs, the first
of which is

03333 — 6933 = =3 P,

which can be shown to transform to the Boussinesq equa-
tion

Uy — Uy — 9 (3 + Uw) =0

0x?

The corresponding o function can again be shown to solve
a set of heat-type equations, which can also be used to form
arecurrence relations for the coefficients of the correspond-
ing sigma expansion.

Similar results have been derived for higher genus trigo-
nalcurvesy> = x> +...,y3 = x7 + .., etc.

4. Genus 6

In genus 6 a new possibility occurs, the so-called tetrag-
onal (4,5) curve [4]

V=X +.. ..

Many of the corresponding equations have been worked out
in this case, although things get quite complicated. Now
the p and o functions are functions of six variables u;,i =
1,...,6. The p functions satisfy a number of PDEs, the
first of which is

Vo666 — 6956 = 3955 + 40a6. (12)
Differentiating (12) twice with respect to us we get
0
9666666 = 126_806650666 — 35566 + 494666-
Ug
Making the substitutions ug = x,us = y,us = ft,

and U(x,y,f) = g¢6, We get eventually the following
parametrized form of the KP-equation:

(Usx = 12UU, = 4U,), + 3U,, = 0.
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