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Abstract—Space-Time analogy for nonlinear delay dy-

namics was proposed in the early 1990s, as a tool to visu-

alize and interprete complex motions in the time domain

only. Beyond the visualization tool, this analogy was re-

cently pushed further as a conceptual argument to support

the emulation, through nonlinear delay dynamics, of tradi-

tional spatio-temporal dynamics such as the ones provided

by neural networks or by paradigmatic models like network

of coupled Kuramoto oscillators. The contribution will

report on experimental and analytical results obtained for

both Reservoir Computing and chimera states, and showing

the powerful capability of delay system to emulate features

usually attributed to newtork of oscillators.

1. Introduction

In the field of complex systems, network of oscillators

are representing a widely used paradigm in order to nu-

merically explore the dynamical features issued from high

dimensional systems. From a more applied perspective,

such studies are expected to provide insights for the un-

derstanding of real worl complex systems, whether natu-

ral ones such as the brain, or technological ones such as

power grid networks, among many other examples. For

simplifications issues, partly motivated by more tractable

problems addressed through numerical or theoretical ap-

proaches, perfectly identical oscillator networks have been

also explored along the same research direction. Symme-

try effects then are expected to come with more importance,

however losing partly relevance with respect to realistic sit-

uation where small differences or variations are always ex-

perienced within a real world network of dynamical nodes.

We have recently contributed in two different research

topics related to the oscillator network theory, through an

unconventional virtual emulation of a network of oscilla-

tors by delay differential equations. Thanks to this vir-

tual emulation, one has access to a network of rigorously

identical oscillator, with stricly identical coupling. More-

over, due to the ease of physical implementation of delay

systems, whether in electronic of photonics, such an ap-

proach could represent a very interesting new paradigm for

the study oscillator networks. After a brief explanation of

the theoretical concepts supporting the virtual emulation of

oscillator networks through delay dynamics and thus the

actual relevance of a space-time analogy for delay systems,

we will report on the two topics through which we have

tested this relevance : The study of chimera states occuring

in identically coupled oscillators in a network, and the de-

sign and implementation of a novel neural network-based

computing concept (Reservoir Computing).

2. Space-time analogy and impulse response modeling

We assume the system under study is belonging to the

general class of Mackey-Glass or Ikeda delay dynamical

systems [1, 2], where the dynamical variable is named

x(t), and the involved delay is τD. In such systems, one

can conceptually split the feedback systems into two sub-

systems interacting circularly one with the other [3]: A

linear dynamical part from which the dynamical variable

x(t) = FT−1[X(ω)] is obtained (FT−1 stands for the in-

verse Fourier Transform), and which is modeled by a lin-

ear filtering H(ω) in the Fourier domain; And an adia-

batic (i.e. instantaneous, without any dynamical effect)

nonlinear delayed part represented by the feedback signal

z(t) = FT−1[Z(ω)] = fNL[x(t − τD)]. With such an asump-

tion, the modeling of the dynamics in the Fourier domain

reduces to the very simple following equality:

X(ω) = H(ω) · Z(ω) (1)

From the previous equation, and invoking the conversion

rules from the Fourier domain to the time domain (e.g.

iω X(ω) → dx/dt), one generally derives the delay differ-

ential equation ruling the dynamics of x(t) solely (without

z(t) which can be now replaced by its definition depending

on x(t − τD) only) in the time domain. Such a derivation is

however subjected to the knowledge of the exact filtering

profile for H(ω), typically in the form of a fraction of poly-

nomials. The simplest form for such a filtering profile is the

one of a low pass filter (H(ω) = (1+ iωτ)−1), which results

in the typical first order scalar delay differential equation as

concerned with the Mackey-Glass or Ikeda models,

τ
dx

dt
(t) = −x(t) + fNL[x(t − τD)]. (2)

Such models, despite their large interest and the many

publications reporting on their complex dynamical behav-

iors, however represent a very specific sub-class only of the

class of problems modeled in the Fourier domain by Eq.(1).
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Each kind of linear Fourier filter thus leads to a new sub-

class of delay differential, as examplified by the bandpass

filtering case our group has studied since the early 2000 [4],

and which has revealed many new dynamical phenomena

(chaotic breathers, Neymarc-Sacker bifurcation, single pe-

riod periodic motion, chimera states) compared to the most

widely studied low-pass case. The simplest bandpass type

filter is H(ω) = iωθ/[(1+ iωθ)(1+ iωτ)], where τ and θ are

the characteristic time scales determining the high and low

cut-off frequencies fh = (2πτ)−1 and fl = (2πθ)−1 respec-

tively. Under this filtering model asumption, an integro-

differential delay equation can be deduced:

1

θ

∫ t

t0

x(ξ) dξ + x(t) + τ
dx

dt
(t) = z(t) = fNL[x(t − τD)], (3)

Beyond these many particular cases derived for each

new Fourier filtering profile, one can keep in the time do-

main the generality offered by the Fourier domain through

Eq.(1), however losing the convenient and widely preferred

differential equation description for the time. The direct

conversion of Eq.(1) indeed results in a convolution prod-

uct (thus a “global” integral representation of the dynamics,

instead of the local one provided by a differential equation):

x(t) =

∫ t

−∞

h(t − ξ) · fNL[x(ξ − τD)] dξ, (4)

where h(t) is the well known (causal) impulse response of

the linear filter defined as the inverse Fourier transform of

the Fourier filtering function H(ω). Re-writing such an in-

tegral representation of the dynamics with some specific

features known for delay equations, e.g. the actual infinite

dimensionality of such dynamics because of the functional

nature of its initial conditions (e.g. a function of time x0(t)

defined over the time interval t ∈ [−τD, 0]), one can obtain

the following expression [5]:

xn(σ) = xn−1(σ) +

∫ σ+γ

σ−1

h(σ + γ − ξ) · f [xn−1(ξ)] dξ, (5)

where the time is decomposed as follows, t = (nη + σ)τD,

with n ∈ N and with η being a constant close to unity,

η = 1 + γ (with γ = o(τ/τD)), thus reflecting the time

delay iteration process inherent to delay dynamics. From

the previous equation which is rigorously derived analyt-

ically, one can clearly make a new physical interpretation

in terms of network of coupled oscillators for the space-

time analogy earlier proposed for delay equations [6]: The

amplitude xn(σ) of any oscillator corresponding to a vir-

tual position σ ∈ [0, η], is dynamically ruled from the same

amplitude xn−1(σ) at one time delay earlier (iteration from

(n − 1) to n, resulting in a discrete time dynamics), with

a modification ruled by the integral term. This integral

term appears as a nonlinear coupling of the continuously

distributed neighboring oscillators at positions ξ around σ,

the impulse response h playing the role of a coupling coef-

ficient.

In the next sections, we will illustrate for two partic-

ular situations, how such a space-time analogy was re-

cently used on the one hand to discover the existence of

chimera states in delay dynamics [5], and on the other hand

to demonstrate the processing efficiency of delay systems

when they are replacing the dynamics of a neural network

to perform Reservoir Computing [7].

3. Chimera states in delay systems

Chimera states have been discovered numerically in

2002 by Kuramoto [8], while exploring the emergence

of symmetry breaking solutions exhibited by network of

coupled identical oscillators. In the case of long range

(non local) coupling conditions, particular sustained so-

lutions were observed, in which the whole network ap-

pears to be structured into sub-networks of congruent solu-

tions within a sub-network, but incongruent between sub-

networks. Chimera states have attracted lots of interest be-

cause of their non-intuitive features corresponding to sym-

metry breaking solutions within a network constructed with

perfect symmetry. In the case of a network of phase os-

cillators, it can be found under appropriate coupling offset

phase and coupling radius, that parts of the network exhibit

fully synchronized oscillators whereas other parts show to-

tally desynchronized ones. Both regions appear to coexist

in a stable way within the whole network. After their first

discovery, one had to wait 10 years until experimental ob-

servation of chimera states could be achieved in 2012. Two

independent papers in two different fields, optics and chem-

istry, reported the experimental formation of such chimera

patterns. One in a spatio-temporal dynamics of the inten-

sity profile of a light beam, and another in the volume of

a reactor where a Belousov-Zabotinsky chemical reaction

was prepared.

In 2013 [9], based on the asumption that delay systems

can mimick some features of spatio-temporal dynamics, we

reported the first numerical and experimental observation

of chimera state within the virtual space-time representa-

tion of this infinite dimensional dynamics. Such a represen-

tation precisely highlights the discrete time evolution along

a vertical axis when n is incremented every time delay it-

eration, of the virtual spatial domain amplitude distribution

within each time delay {xn(σ) | σ ∈ [0, η]}. Under ap-

propriate parameter condition and delay dynamical model,

the corresponding functional x(σ) evolving over time n was

clearly exhibiting the emergence of a well structured vir-

tual space along σ, with an alternance of quiet plateaux

and chaotic-like oscillations, sustained within the “length”

τD of the virtual space as the discrete time n is growing.

Figure 1 shows an example of an experimentally

recorded scalar time trace x(t) from a bandpass delay dy-

namical system. The time series was then cut according

to poperly chosen “spatial” intervals such that each for

t ∈ [nητD; (n + 1)ητD], we stack vertically the color en-

coded amplitudes x(t). From this representation, a particu-
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Figure 1: Space-Time plot of an experimental 3-headed

chimera solution emerging (n growing from bottom to top)

from a background noise.

lar pattern can be clearly viewed and identified as a chimera

state.

Thanks to the derivation of Eq.(5), interesting analogies

and interpretation have been proposed in terms of coupling

distance and its influence on the chimera existence and fea-

ture [5]. Since the coupling function between distant vir-

tual oscillators turns out to be determined by the impulse

response profile h(ξ), one can carve such a function directly

through the Fourier filter used in the delayed feedback loop.

Work is in progress to demonstrate, via the convolution

product description involving the impulse response, why

chimera state can be found (or are not stable) in low pass

delay dynamics, whereas they have been indeed observed

for bandpass delay dynamics. One can notice for example,

that a direct consequence of a bandpass filter compared to

a low pass, is to extend the equivalent coupling range in

terms of network of oscillators, through a broader impulse

response.

Chimera states reveals deterministic organization of

complexity within high dimensional dynamical systems.

They correspond to the emergence of spontaneous complex

dynamics in an autonomous way, in the sense there is no in-

formation provided by the external world of the dynamics,

except for the initial noisy background from which chimera

appears. In the next section, similar spatio-temporal fea-

tures of high complexity delay dynamics will be reported,

however in a strongly non autonomous way. Indeed, we

will report on the processing capability of delay dynamics

while they are subject to large amplitude external forcing

coming from the information signal to be processed.

4. Reservoir Computing (RC) with delay systems

The concept of RC [10, 11] is derived from recurrent

neural network (RNN) approaches, however simplifying

extremely the learning phase of the computational steps.

The latter indeed represents traditionally a very critical

issue in standard RNN, because the optimal set of cou-

pling parameters is very difficult to determine by a learn-

ing procedure, particularly when they concern many sets of

such connectivity strength, the ones of the input and output

layers, and the ones of the internal connectivity defining

the network structure itself. RC considers that the output

connectivity, also called the read-out or output layer only,

needs to be learnt. The two other sets of connectiviy coef-

ficients do not need critical optimization, and they can be

thus simply chosen at random for example. Such a sim-

plification transforms the learning phase into a very sim-

ple, very efficient, very fast, and always converging solu-

tion. Beyond this surprising simplification, RC has more-

over shown surprising computation accuracy, with compa-

rable results, and sometimes even better ones, compared to

traditional neural network computing.

More recently, RC has reached another important step

forward through its successful hardware demonstration

[12], moreover with an initially unexpected structural so-

lution for the so-called Reservoir: the usual network of

interconnected nodes was physically realized through the

internal complexity of a delay dynamical system. As il-

lustrated in the theoretical arguments of Section 2, delay

dynamics can provide qualitatively similar complexity fea-

tures compared to spatio-temporal dynamics such as a net-

work of neurons. In the present section, we will again take

the opportunity of the unusual modeling of delay dynam-

ics through Eqs.(4) and (5), in order to analytically derive a

rigorous correspondence between a delay dynamics seeded

by a time division multiplexed input information, and a net-

work of interconnected nodes excited by an input informa-

tion through the usual input layer.

A key concept in the use of a delay system to emulate a

neural network, is to consider the dynamical nodes of the

network as being temporal positions within the time inter-

val corresponding to the delay. One needs then to re-define

the time variable t, so that it can reflect the emulation of

a virtual spatial position σ ∈ [0, η], which is updated in

time each round trip of the signal in the delayed feedbak

loop, i.e. each time delay τD. Such an approach indeed

reveals the intrinsic multiple time scale feature of a delay

dynamics, the fast time scale τ related to the high cut-off

frequency fh, and the slow time related to the delay τD:

t = (σ + n) · ητD.

If one then assumes that the virtual nodes correspond to

sampled positions σk = k δτ/τD, the number of virtual

nodes in the delay dynamics amounts to K = τD/δτ. Ad-

dressing each of these nodes with an input vector u(n) ∈ RQ

is achieved, as already stated, through a standard time divi-

sion multiplexing technique. Distributing “randomly” each

vector component of u(n) onto each of the K virtual nodes

of the delay dynamics, is an operation typically performed

according to a so-called input connectivity matrix. From

Eq.(4), one can arrange the integration interval for the con-

volution product so that the node amplitude xk ≡ xσk
at

time n can be expressed as an update of the amplitude of

the same node, but at time (n − 1), i.e. xk(n − 1). Taking
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also into account that the dynamics is seeded by the input

information to be processed, one obtains:

xk(n) = xk(n − 1) +

∫ σk

σk−τD

h(σ − σk) ×

fNL

[

xσ(n − 1) + ρ · uI
σ(n − 1)

]

dσ. (6)

The latter expression reveals in a rigorous way the analogy

of delay-based RC with the original Echo State Network

approach as proposed in [10].

The output layer consists also in a matrix multiplication,

corresponding physically to a circular convolution operated

on the response signal xσ(n) and involving the Read-Out

matrix WR = [wR
mk

] ∈ RM × RK . The computed output is a

vector y(n) ∈ RM , which is the expected calculation result

obtained from the input information u(n):

ym(n) =

K
∑

k=1

wR
mk xk(n). (7)

The Read-Out matrix WR is practically the solution of a

ridge regression problem minimizing the error of the out-

put vector considering a set of known pairs of answer / re-

sponse (u(n); ỹ(n)). This ridge regression step precisely

corresponds to the learning phase of such a delay-based

RC.

This delay-based RC concept was practically imple-

mented recently by different authors, with very successful

computational performances. A classical speech recogni-

tion problem was for example performed experimentally

[7, 12], with record word error rate (WER) down to 0% for

a clean spoken digit database, thus achieving state of the

art performances.

5. Conclusion

We have reported an original writing of a delay dynamics

through a signal processing approach, involving a convolu-

tion product description instead of the usual delay differ-

ential equation. The temporal impulse response attached to

the linear Fourier filter involved in the delayed feedback os-

cillator loop, was revealed as a key physical ingredient for

such a convolution product description. This representation

was particularly useful to identify the space-time analogy

involved in two currrently investigated research topic for

delay dynamics: Chimera states, and delay-based Reser-

voir computing. Our analytical derivation has shown its

relevance in the interpretation of these two recent success-

ful achievements. Work is in progress to further develop

this theory, in order to better understand chimera states, as

well as to optimize the computational capabilities of delay-

based RC.
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