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Abstract—The use of complex network analysis to
brain imaging has been instrumental to a deeper under-
standing of the way the brain works at a system level. The
more traditional method embodied by Statistical Paramet-
ric Mapping (SPM) is limited to the testing of hypothe-
ses through statistical processes about specific effects in lo-
calized Regions of Interest. In order to check the validity
of complex network analysis from the viewpoint of SPM,
we analyze fMRI data for retinotopic maps, utilizing estab-
lished knowledge concerning SPM.

1. Introduction

Human brain mapping in the 1980’s was mainly aimed
at characterizing how specialized regions of interest (ROI;
e.g., [1]) in the brain respond to differences in experimental
conditions. Though this reduces the huge number of voxels
to a tractable ROI measurement, it fails to map new func-
tional brain regions (whole-brain analysis). The study of
more global effects involving many ROIs requires the use
of statistical maps. Statistical parametric mapping (SPM)
is one of the most well-established statistical techniques for
the analysis of brain imaging data (fMRI, MEG, PET, etc.)
[2, 3]. Widely used in brain research, SPM entails the con-
struction of statistical processes to test hypotheses about
regionally specific effects. In recent years brain research
has seen an increasing interest in complex network analysis
[4]—a multidisciplinary approach in which the properties
of complex systems are described by quantifying network
topologies based on graph theory. Unlike SPM, which ex-
tracts specific brain regions associated with a statistically-
significant increase of the response to a stimulus, complex
network analysis uncovers the specific link topologies be-
tween brain regions that have significant correlations in re-
sponse to stimuli.

An important measure of the structure of a network is
modularity, which is the extent to which a network can be
divided into clusters of nodes that have higher densities of
connections between intra-cluster nodes than inter-cluster
nodes [5]. Modules in networks can be determined using
heuristic algorithms, like the Louvain method [6], in a time
that is only a logarithmic factor larger than the number of
nodes. Identification of modules in brain networks is im-
portant, because they tend to correspond with functional
units in the brain. Modularity on not only one topological
scale, but also on various scales has attracted attention in

brain research, because it is thought to enhance reconfig-
urability of connections without affecting stability of net-
work dynamics [5].

Ideally, if SPM analysis would be applied to the extrac-
tion of networks in the brain, the validity of complex net-
work analysis in brain research could be evaluated, but un-
fortunately the significant corpus of results from SPM anal-
ysis has remained out of reach due to the incompatibility of
both analysis methods.

This paper investigates how both methods can be com-
pared by restricting ourselves to a so-called retinotopical
experiment. Retinotopy is the mapping of a visual stimulus
on the retina to an area of the visual cortex. In this report,
we analyze the fMRI data for retinotopic maps for three dif-
ferent simple visual stimuli, and make a comparison with
corresponding SPM results, of which we have an extensive
analysis available. Our results show a clear performance
difference in network analysis between the whole-brain on
one hand and the early stages of the visual cortex only on
the other hand. If we restrict ourselves to the above vi-
sual areas, we are able to identify three different modular
sub-networks corresponding to the three stimuli, but this
becomes impossible for whole-brain networks. When hi-
erarchical modularity is assumed in our analysis, however,
we can extract some of the modules for specific visual stim-
uli, even if we deal with whole-brain networks. Overall, the
properties we find in the analysis of networks are compati-
ble with SPM results, but the extracted modules are usually
the mixture of two stimuli. We discuss the reason for the
occurrence of these mixtures, and conclude that the results
between the different methods resemble each other suffi-
ciently close to validate network analysis methods in brain
imaging research.

2. Methods

The visual stimuli used in the experiment consist of three
sizes of rings, denoted by center (Fig. 1(a)), middle (Fig.
1(b)), and peripheral (Fig. 1(c)) in order of increasing
radii. Each ring is composed of a high-contrast checker-
board, the fields of which change synchronously in an ON-
OFF fashion. The experiment is organized in three ses-
sions, each consisting of six groups (Fig. 1(e)). In one
group there are four epochs, the first three of which corre-
spond to the respective stimuli, and the last one of which
is a resting state (no stimuli; Fig. 1(d)). Inside each epoch
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Figure 1: (a)-(d) Visual stimuli. (e) Organization of exper-
iment.

six fMRI scans are made, each taking 2.5 s, so each epoch
takes 15 s. During an epoch, the corresponding stimulus is
shown to the subject.

3. Results

3.1. Activated Region (SPM-t Image)

In order to estimate the activated region for specific vi-
sual stimuli, we extract the fMRI data by using the hrf
(haemodynamic response function) in Fig. 2(a). This is
an impulse response function of the stimulus, represented
by the response of blood oxygen levels. The output of
the impulse response function is the convolution integral of
the hrf and the function describing the actual stimulus. In
Fig. 2(b), the function resulting from the convolution inte-
gral is superimposed on the time-series of the fMRI output
signal. Suppose that the extracted functions for the center-
, the middle-, and the peripheral-stimulus are x1(t), x2(t),
and x3(t), respectively. Then the time-series of the fMRI
data, y(t), can be estimated as the linear sum of the three
convolved functions xi(t) for i = 1, 2, 3 as

y(t) = β0 + β1x1(t) + β2x2(t) + β3x3(t) + error.

The result is called the General Linear Model (GLM).
Statistically, we can estimate the three parameters βi for
i = 1, 2, 3 by minimizing the root-mean-square of the er-
ror term. When we want to identify the activated region
for, for example the center-stimulus, we test the estima-
tion of βi under the null hypothesis

∑
i ciβi = 0, where

ci is the contrast vector chosen such that the sum of the
three elements is zero, and only one element contributes
in a positive way; here {c1, c2, c3} = {1,−0.5,−0.5} is used
for the center-stimulus. In Fig. 2(b), the green graph is the
original time-series, and the blue graph is

∑
i βixi(t) with

the βi as estimated above. Fig. 3.1 shows the activated
brain region for the center-stimulus, which is displayed
by the SPM toolbox in MATLAB. For the middle-stimulus
we set {c1, c2, c3} = {−0.5, 1,−0.5} and for the peripheral-
stimulus {c1, c2, c3} = {−0.5,−0.5, 1}.

Figure 2: (a) Haemodynamic response function used in
SPM. (b) Time series at the voxel (22,-106,8), which is the
voxel with maximal response for the center-stimulus.

Figure 3: Network properties for the whole-brain network.
(a) correlation matrix, (b) adjacency matrix (threshold is
0.8), (c) histogram of the number of elements in each mod-
ule (abscissa is module number). (d)-(e) are the averaged
time-series.

3.2. Whole Brain Network

Fig. 3(a) shows the correlation matrix for the whole-
brain data when all visual stimuli are taken into account.
This correlation matrix is arranged such that elements be-
longing to the same module lie near each other in a block
with similar colors. The modules are estimated by the Lou-
vain algorithm[6] and labeled as in Fig. 3.

As shown in the histogram in Fig. 3(c), there are five
dominant modules. Fig. 3(d)-(f) shows the averaged time-
series for three of those modules, whereby the abscissa in-
dicates the scan number. Suppose that the time-series at a
voxel is described as the numerical sequence {y1, y2, · · ·}, so
yn is the value of the voxel in the n-th scan. The averaged
time-series are defined as

ỹk =
1
N

N−1∑

n=0

yk+24n, k = 1, 2, · · · , 24,

where N is the total number of groups in one experiment
(N = 3 sessions × 6 groups = 18). The range of k for the
center-, middle-, peripheral-, and rest-epoch corresponds
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Figure 4: Comparison between activated region (SPM-t im-
age) and estimated module region (by the Louvain method)
for (a) module 92 (with black SPM for middle), (b) module
233 (with black SPM for peripheral), and (c) module 241
(without black SPM).

to k ∈ [1, 6], k ∈ [7, 12], k ∈ [13, 18] and k ∈ [19, 24],
respectivelly.

Figure 4 shows the distribution of the voxels correspond-
ing to each module in the brain. Voxels belonging to mod-
ule 92 appear to be mainly distributed in the area of the
visual cortex, whereas voxels in module 233 are uniformly
distributed over the whole brain. Voxels in module 241 are
mostly limited to locations in the cerebellum, which is re-
lated to motor control, and not to visual processing. The
averaged time-series in Fig. 3(d)-(f) are dissimilar to the
haemodynamic response function in Fig. 2(a), and neither
do they show significant differences between the scans be-
longing to the different stimuli. One possible reason is that
the connection among voxels in visual cortex is not strong
enough to extract stimulus-related modules, because some
of connections can be indirect correlation through the com-
mon stimulus pattern. We conclude that we cannot differ-
entiate between any clustered sub-networks for different vi-
sual stimuli for the whole-brain data.

3.3. Truncated Network

In order to overcome the problem mentioned in the pre-
vious section, we truncate the brain network so that only
the region predicted to be significant by SPM is included.
As shown in Fig. 5 and Fig. 6, we can clearly find three
different modular sub-networks for the three different vi-
sual stimuli. In Fig. 6, the plotted red points for each esti-
mated module are almost superimposed on the values ob-
tained from SPM (black map). The boundaries of the es-
timated modules are similar to the corresponding bound-
aries obtained from SPM. Fig. 5(f) is similar to the hrf for
the peripheral-stimulus. Fig. 5(d) appears to be a mixture
of both center- and middle-stimulus modules, and Fig. 5(e)
appears to be a mixture of both middle- and peripheral-
stimulus modules.

3.4. Hierarchical Modularity in Whole-Brain Network

Even if we deal with the whole-brain network, we can
extract some of the modules for specific visual stimuli by

Figure 5: Network properties for the truncated brain net-
work. (a) Correlation matrix, (b) Adjacency matrix (thresh-
old is 0.8), (c) Histogram of the number of elements in each
module (abscissa is module number). (d)-(e) are the aver-
aged time-series.

Figure 6: Comparison between activated region (SPM-t im-
age, black) and estimated module region (red dot, estimated
by the Louvain method) for (a) the center-stimulus (mod-
ule 116), (b) the middle-stimulus (module 98), and (c) the
peripheral-stimulus (module 212). Truncated boundaries
are shown as red rectangles.
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Figure 7: Hierarchical modularity, calculated by the Lou-
vain method. Module 92 in level 1 is the same as module
92 in Fig. 4(a).

extracting hierarchical modularity (estimated by the Lou-
vain method). Module 110 (level 2) in Fig. 7 appears to be
a mixture of both center- and middle-stimuli. The black re-
gion is SPM-related for the center-stimulus. Red points re-
lated to module 110 (level 2) are located mostly within the
black region related to SPM. Module 112 (level 2) in Fig. 7
appears to be a mixture of both middle- and peripheral-
stimulus modules. The black region is SPM-related for the
middle-stimulus. Red points related to module 112 (level
2) are partially located outside the black region belonging
to SPM, but partially have the same boundaries.

4. Discussion

The complex networks obtained from fMRI data of the
retinotopic experiment in this paper are compatible with the
results from SPM. However, the extracted modules do not
have a pure correspondence with the three checkerboard
patterns stimuli, but rather tend to be based on a mixture
of two out of the three stimuli. Among the five modules
identified from whole-brain data, there are three modules
for which the fMRI signal goes up and then down once
in four epochs, whereas in the other two modules the sig-
nal does so twice in four epochs. The latter two modules
are thus more dominant in terms of correlated activity, in-
dicating increased connectivity between these modules, as
compared with the first three modules (see also Fig. 8).

The major advantage of complex network-based analy-
sis compared with SPM is that while SPM shows only the
coordinates of voxels in the activated regions, modules es-
timated by complex network analysis show the connectiv-
ity among voxels as well as their coordinates. Tradition-

Figure 8: Simulated time-series, the correlation matrix, and
the adjacency matrix. Estimated modularity by the Louvain
algorithm are shown on the correlation matrix with white
boxes. Noise is uniformly distributed from -0.4 to 0.4. One
epoch stimulus include 10 points, and noise is i.i.d for all
points. Threshold for the adjacency matrix is 0.7.

ally, cytoarchitecturally labeled brain area (like, Brodmann
area) is used as the candidate of ROIs. However, such
anatomical difference does not always explain the func-
tional difference in the brain activity. The modules esti-
mated by complex network analysis can be a new candidate
of ROIs which can clearly explain the functional difference
in the whole-brain networks.
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