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Abstract—The DC-DC converters are one kind
of hybrid dynamical systems, and they present typi-
cal nonlinear phenomena; bifurcation phenomena and
chaotic attractors. On engineering view points, they
are undesigned behavior because they cause abrupt
motions or noise. To suppress them, various control-
ling techniques have been proposed. On DC-DC con-
verters, the period of pulse inputs is an important pa-
rameter for behavior of the circuit. In this paper, we
investigate the chaos controlling method by adjusting
the interrupt dynamical events caused by pulse inputs,
and propose two-type pulse modulation schemes.

1. Introduction

The systems with interrupt events that change dy-
namical behavior of them such as switches are treated
as hybrid dynamical systems. These features are ob-
served in many engineering’s fields [1]. Due to the non-
linearity of interrupt events, rich complex behavior ap-
pears, i.e. bifurcation phenomena and chaotic attrac-
tors. They are also observed on the one-dimensional
piece-wise linear system, and it is confirmed that
border-collision bifurcations play an important role
[3, 2, 4].

In the electrical circuit, hybrid dynamical systems
exist by featuring the electrical switches, i.e. mechani-
cal switches and MOS-FETs. A DC-DC converter cir-
cuit is one of hybrid dynamical systems. Some reports
issue the bifurcation and chaos, and the influence for
its electrical characteristic is investigated [5, 6]. On
the view point of performance as converters, chaotic
attractors are similar to noise-like responses, and they
can be considered as the behavior to avoid. In recent
studies, various controlling schemes via chaos control-
ling are proposed for DC-DC converter models [7, 8, 9].
Kousaka, et.al proposed the controlling scheme with
varying the source voltage. We also have proposed
the method with varying reference voltages of com-
parators, but they mean output voltage values, and it
should be fixed as objective output voltage values. On
the other hand, the pulse width modulation (PWM)
input is used to drive the converter circuit. Its duty
ratio decides the output voltage, and the period of the

pulse have influence the circuit’s behavior mainly. Ac-
cordingly, the frequency modulation has possibility to
control the circuit, and chaos controlling by perturba-
tion for frequencies.

In this study, we try to suppress chaotic phenomena
on the DC-DC converter model circuit by the clock
pulse modulation. The parameter perturbation based
on the feedback control is used. The controller gain is
designed with a pole assignment method. At first, we
explain the design procedure, and show the gain range
to stabilize objective values. Next, we demonstrate
performance of our controller. by numerical simula-
tions, feasibility and implementability is confirmed.

2. Circuit model

Let us consider a simple interrupt chaotic system
[7] shown in Fig. 1 as an example. The switch is
flipped by a certain rule depending on the state and
the period. Assume that v is the state variable, and
then the normalized equation is given as follows:
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Figure 1: DC-DC converter model circuit.

dv

dt
(t) = v(t)− E If t = nτ then E = Ein

If v(t) > Er then E = 0
(1)

where E1 and Er are a direct current bias and a switch-
ing threshold value, respectively. τ = T/RC is the pe-
riod of the clock pulse input. If the Poincaré section
is defined as Π = v(t) ∈ R; t = nτ , trajectories strike
two types of solutions, and they can be solved exactly,
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see [3] Therefore the system can be discretized by the
Poincaré section, and redefined as follows:

vk+1 = g(vk)

=

 (vk − E1)e
−τ + E1 vk < D

Er
vk − E1

Er − E1
e−τ vk ≥ D

, (2)

D = (Er − E1)e
τ + E1. (3)

A chaotic attractor and UPO with parameters E1 =
3 and τ = 0.606 are shown in Fig. 2. It is con-
firmed that the ripple voltages of the periodic orbit are
about 0.6V smaller than the chaotic attractor. This
model show various responses dependently on the out-
put voltage Er, and there is the case of large ripple
voltages. Unstable periodic orbit similar to the Fig. 2
(b) is embedded into the chaotic attractor. If it can be
stabilized by appropriate controlling input, the ripple
voltage will be decreased.
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(a) Chaotic attractor Er = 2.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5  10  15  20  25  30

v 
[V

]

t [ms]

0.5V

(b) Periodic orbit: Er = 1.81

Figure 2: Chaotic attractor and periodic orbit with
E1 = 3 and τ = 0.606.

3. Controlling methods

In this paper, two types scheme for stabilization of
UPOs are proposed based on a feedback control. The
pole assignment method is used for design of a con-
troller gain. Let us consider a 1-dimensional discrete
time dynamical system as follows:

xk+1 = f(xk, λ), x ∈ R, λ ∈ R. (4)

Assuming the controlling input uk = c(x∗ − xk) for
the parameter, the system is described as xk+1 =
f(xk, λ+c(xk−x∗)), where x∗ is a target value, and c
is the controler gain. Thus, the characteristic equation
is shown as follows:

χ(µ) = A+Bc− µ = 0, (5)

where,

v∗ =
−ErE1e

−τ

Er(1− e−τ )− E1
, A =

∂f

∂v∗
=

Er

Er − E1
e−τ ,

(6)
and B = ∂f/∂λ. The conditions of stability for the
target value x∗ is |µ| < 1. Therefore the controller
gain c that x∗ becomes stable is derived as follows:

c =
q −A

B
, −1 < q < 1 (7)

In the target circuit model, various controlling
scheme is proposed, e.g. Kousaka, et.al have used the
source voltage E1, and we also have proposed control-
ling scheme with the threshold value Er. On the other
hand, the time τ of the clock pulse input is also the
adjustable parameter. The duty ratio of the clock in-
fluences the output voltage directory, but its period
is of little relevance to them. However, the period is
important parameters for behavior of the circuit, and
could be efficient controlling parameter. Next, specific
two-type controlling schemes with the perturbation for
the period are explained.

3.1. PFM: the frequency of pulse width

The frequency τ of a clock signal is perturbed by
controlling inputs uk. This is one kind of the pulse fre-
quency modulation (PFM). Figure 3 shows the sketch
of the PFM type controlling. In this scheme, the con-
troller can adjust the timing of the next pulse, and the
voltage vk+1 changing from the discharge to the charge
is adjusted. Thus, this method influence only the map

T+u(t) t0

E
r

v
k+1

v
k+1

v
k

Clock pulseClock pulse
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Figure 3: Sketch of PFM type controlling. Arrows
mean additional interrupt events.

with vk < D. The lower map of Eq. (2) is used for
the objective one-periodic orbit obviously. the partial
derivative of the map with (2) respect to the period τ
is given as follows:

B = −Er
v∗ − E1

Er − E1
e−τ (8)

From Eq. (7) and (6), the ranges of stabilizable gains
are determined without experimental results, and they
are shown as follows:

−Er + E1 + Ere
−τ

Er(v∗ − E1)e−τ
< c <

Er − E1 + Ere
−τ

Er(v∗ − E1)e−τ
(9)

−1.7 < c < −0.79 (10)
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3.2. Occasional applied pulse input: forcing
the interrupt event at appropriate time
ahead original clock pulses

If the target circuit is already constructed, and
controller can not adjust the frequency of the clock
pulse, previous scheme does not apply to one. Next,
let us consider the controlling scheme for the circuit
with fixed clock pulses. The sketch of the controlling
scheme is illustrated as Fig. 4. On the previous con-
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Figure 4: Sketch of Occasional applied pulse events.
The red arrow means an additional interrupt pulse.

troller, it is designed based on changing the circuit
phase forcibly to the charge at an appropriate time.
On the other hand, this controller changes the mode to
the discharge by appropriate pulse. The pulse is added
to the RS-FF before the radical clock pulse. Thus, this
controller does not influence the clock pulse, and it can
apply to the circuit with the fixed clock pulse.

Figure 5 shows behaviour of the circuit with control-
ling inputs, it can confirm that four type trajectories
exist dependently on the initial voltage vk. (i) and (ii)

Er
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ClockControl Pulse
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vk+1

Figure 5: Four-type trajectories by the applied pulse.

are the same to the circuit’s one without controller.
(iii) and (iv) are new behaviour with influences of ap-
plied pulses. They can be derived as two operation
mapping with τ − uk and uk. Therefore, it can be de-
scribed as vk+1 = g(g(vk, τ − uk), uk). As a result,
the differential equation of the circuit with controller
is described as follows:

vk+1 = g(g(vk, τ − uk), uk)

=



(vk − E1)e
−τ + E1 (i)

Er
vk − E1

Er − E1
e−τ (ii)

Er
vk − E1

Er − E1
e−τ + (1− e−uk)E1 (iii){

Er

Er − E1

}2

(vk − E1)e
−τ

− ErE1

Er − E1
e−uk (iv)

(11)

When ξ << 1, the input uk is also approximately
zero. In this case, the map (iii) is applied, and the
partial derivative of the map respect to the controlling
input uk is given as follows:

B = e−ukE1

∣∣
uk=0

= E1 (12)

From Eq. (7) and (6), the ranges of stabilizable gains
are determined without experimental results, and they
are shown as follows:

− 1

E1
− Ere

−τ

E1(Er − E1)
< c <

1

E1
− Ere

−τ

E1(Er − E1)
(13)

0.58 < c < 1.24 (14)

Note that, if uk < 0, the applied pulse have no mean-
ing because the clock pulses arrive before controlling
pulse. Therefore, the limitation 0 < uk for the con-
troller is necessary, and pulse is applied occasionally
to the objective circuit with only uk is positive values.

4. Controlling result

Figure 6 shows controlling results. The under ar-
rows are clock pulses applied controlling input values,
and the wave form means the capacitor voltage v of
the circuit. Under figures are amounts of controlling
inputs. In Fig. 6 (a), it is confirmed that the fre-
quency of clock pulse is decreased at the beginning of
the simulation. However, it gets back the ideal value τ
with decresing the controlling input value u. Finally,
the voltage converged as one-periodic orbit with small
ripples. In Fig. 6 (b), the frequency of the clock pulse
is not changed, but additional pulse (red arrows) are
added, and interrupt events are forced ahead original
clock pulses. Under figures show amounts of the con-
trolling inputs. When v converges to the objective
periodic orbit, the input u(t) also converges to zero.
Note that, there is the interval with u = 0 and no
additional pulses, because this scheme has limitation
for the amount of controlling input. If the input u
takes negative value, controller applies the additional
pulse to the RS-FF after the clock pulse, and it has
no meanings. Hence, when the controlling input takes
negative value, it becomes zero. Thus, these behaviors
are unstable periodic orbits and they are stabilized by
controller.
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(a) PFM type (K = −1.38)
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(b) Occasional applied pulse type (K = 1.01)

Figure 6: Controlling results of two type controllers.
Behavior of voltages v converged as a one-periodic or-
bit with small ripples, and controlling inputs become
u(t) = 0.

On comparison these result, it seems that the
method 2) can control the circuit to the objective UPO
from simulation results. Actually, setting times of two
methods are ts1 ≈ 15 and ts2 ≈ 4.5, respectively. How-
ever, on the view point of robustness, the method 2)
has limitation for the amount of controling input, and
it causes the degration of robustness. The method
1) can applyes bipolar inputs, and can respond unex-
pected motions ( offcourse, this method has also limi-
tation for the controlling input, and it is uk < τ , but
it is slacker than the method 2)). Thus, the method 1)
has high robustness than the method 2). Note that,
these characteristics is changed by adjusting the pa-
rameter q of the controller, and this paper does not
disscuss appropriate vales of them.

5. Conclusion

In this study, we propose two types of chaos control-
ling for hybrid dynamical systems, and demonstrate
the performance of them. As a result, our controller
can stabilize unstable periodic orbits or DC-DC con-
verter model circuits, and can reduce the ripples of
them.
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