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Abstract—There is recent interest in the use of Koop-
man (composition) operator theory for a wide range of
problems in dynamical systems. In its dual, Perron-
Frobenius theory, the use of invariant measures for under-
standing of statistical properties of dynamical systems is
routine. A much less used concept is that of eigenmea-
sures [10]. We extend the theory related to eigenmeasures
to introduce the notion of wavefunctions into dynamical
systems theory. A wavefunction can be thought of as the
density of a complex measure on the state space. It sat-
isfies the common Perron-Frobenius equation. Using this,
we derive a Shrödinger-type formalism for complex mea-
sure propagation on embeddings of dynamical system dy-
namics into the output space of an observable propagated
by the Koopman operator. The resulting wavefunction is
named an observable wavefunction (OW).

1. Introduction

Driven by success in operator-based framework in quan-
tum theory, Bernard Koopman proposed in his 1931 paper
[3] to treat classical mechanics in a similar way, using the
spectral properties of an operator associated with the dy-
namical system evolution. Koopman extended this study in
a joint work with von Neumann in [2]. Those works, re-
stricted to Hamiltonian dynamical systems, did not attract
much attention originally, as evidenced by the fact that be-
tween 1931 and 1963, the Koopman paper [3] was cited 25
times, according to Google Scholar. This can be attributed
largely to the major success of the geometric picture of
dynamical systems theory in its state-space realization ad-
vocated by Poincaré. In fact, with Lorenz’s discovery of
a strange attractor in 1963, the dynamical systems com-
munity turned to studying dissipative systems and much
progress has been made since. Within the current research

in dynamical systems, some of the crucial roadblocks are
associated with high-dimensionality of the problems and
necessity of understanding behavior globally (away from
the attractors) in the state space. However, the weaknesses
of the geometric approach are related exactly to its locality
(it often relies on perturbative expansions around a known
geometrical object) and low-dimensionality (it is hard to
make progress in higher dimensional systems using geom-
etry tools).

Out of today’s 400+ citations of Koopman’s original
work, [3], 75% come from the last 20 years. Thus, it was
only in the 1990’s that potential for wider applications of
the operator-theoretic approach has been realized [4, 7]. In
this century the trend of applications of this approach has
continued, as summarized in [1]. This is partially due to
the fact that strong connections have been made between
the spectral properties the Koopman operator for dissipa-
tive systems and the geometry of the state space. In fact,
the hallmark of the work on the operator-theoretic approach
in the last two decades is the linkage between geometrical
properties of dynamical systems - whose study has been ad-
vocated and strongly developed by Poincaré and followers
- with the geometrical properties of the level sets of Koop-
man eigenfunctions [7, 5, 6]. The operator-theoretic ap-
proach has been shown capable of detecting object of key
importance in geometric study, such as invariant sets, but
doing so globally, as opposed to locally as in the geomet-
ric approach. It also provides an opportunity for study of
high-dimensional evolution equations in terms of dynami-
cal systems concepts [8, 11] via a spectral decomposition,
and links with associated numerical methods for such evo-
lution equations [12].

In this paper we consider the propagation of observables
under the Koopman operator and derive an equation for
wavefunction evolution for such a propagation. We first
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define the notion of a wavefunction on the state-spece.
Than we define a complex observable on the state space
and consider the evolution of a complex measure associ-
ated with such an observable. The result is a Schrödinger-
type formalism that couples the Koopman operator and the
Peron-Frobenius operator state-space formalisms and ex-
tends them to embedding space of observable outputs. We
pursue this in 1−D here, and will present the n-dimensional
theory in a forthcoming paper.

2. Wavefunctions for Observable Evolution

Let M = R and (x, t) ∈ R = R × R. Let v be a smooth
vector field on R. The wavefunction ρ (we will call it the
true wavefunction or TW) satisfies

∂ρ

∂t
+
∂ρv
∂x

= 0, (1)

Let the observable f : R→ C be defined by

f = e−iY , (2)

where Y(x, t) is smooth (at least in C2). This implies that
the observable wavefunction (OW) ψ defined by

ψ =
ρ

i ∂Y
∂x eiY

. (3)

is the density of a complex measure of the observable f =

e−iY corresponding with the TW ρ, since

d f
dx

= i
∂Y
∂x

eiY . (4)

We proceed to derive an equation of evolution for ψ. We
will denote partial derivatives with respect to t by (·)t and
partial derivatives with respect to x by (·)x.

We have

ψt =
ρt

iYxeiY + ρ

(
1

iYxeiY

)
t

= −
vρx

iYxeiY −
vxρ

iYxeiY + ρ

(
1

iYxeiY

)
t
. (5)

From (3) we have

ρx = iψxYxeiY + iψYxxeiY − ψ(Yx)2eiY , (6)

and, as a consequence,

−vρx

iYxeiY = −vψx −
v

Yx
ψYxx − i

v
Yx
ψ(Yx)2. (7)

We also have(
1

iYxeiY

)
t

= −
1(

iYxeiY )2

(
iYxteiY − YxYteiY

)
= −

(
Yxt

i(Yx)2eiY +
Yt

YxeiY

)
, (8)

and thus

ρ

(
1

iYxeiY

)
t

= −iψYxeiY
(

Yxt

i(Yx)2eiY +
Yt

YxeiY

)
= −ψ

(
Yxt

Yx
+ iYt

)
. (9)

Collecting all of these, from (5) we get

ψt = −vψx−ψvx−
v

Yx
Yxxψ−

Yxt

Yx
ψ− i(Yt +

v
Yx

(Yx)2)ψ. (10)

This is the equation that governs the observable wavefunc-
tion evolution. If the observable is real, with Y = iK, we
get

ψt = −vψx − ψvx −
v

Kx
Kxxψ −

Kxt

Kx
ψ + (Kt +

v
Kx

(Kx)2)ψ

= −vψx − ψvx + (−
v

Kx
Kxx −

Kxt

Kx
+ (Kt +

v
Kx

(Kx)2))ψ

= −vψx − ψvx + (Kt −
v

Kx
(Kxx − K2

x ) −
Kxt

Kx
)ψ.

(11)

3. Conclusions

We have derived a wavefunction formalism for
continuous-time dynamical systems in 1D. The theory de-
veloped here leads to Schrödinger-type equations for evo-
lution of constant speed on a 1-dimensional Riemannian
manifolds [9]. It also admits generalization to higher di-
mensions. The formalism provides a coupling betweem
Koopman operator theory - evolving observables - and
Schrödinger operator theory - evolving densities - for em-
beddings of dynamical systems.
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