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Abstract—The remarkable filtering characteristics of
the mammalian auditory system inspire scientists and en-
gineers to transfer the underlying signal processing prin-
ciples into technical applications. An established element
in the modeling of the nonlinear amplification processes of
the hearing organ is the Hopf-type amplifier, that is based
on the resonance behavior near the onset of an Andronov-
Hopf bifurcation. Following this idea with focus on a dig-
ital realization, we show in this contribution first investi-
gations of the nonlinear input-output characteristic of an
amplifier based on the Neimark-Sacker bifurcation in the
discrete-time domain. We evaluate common features and
differences with respect to parameter dependencies.

1. Introduction

One of the main tasks in engineering sciences is the de-
tection and amplification of weak signals. This is the pri-
mary processing step for a large number of sensor applica-
tions and measurement systems as well as RF- and wireless
communication systems. The challenge often lies in the
extraction of small desired signals with certain frequencies
from a noisy environment. This requires a filtering char-
acteristic with a strong amplification of faint signals in a
narrow frequency band. Moreover, a high dynamic range
allows the processing of a wide range of signal levels. As
a technical example, the lock-in amplifier is a measure-
ment system to detect weak signals in an extremely nar-
row frequency band. However, due to its linear amplitude
response, it requires advanced electronic circuitry to ex-
tend the dynamic range [1]. More efficient examples for
the aforementioned tasks can be found in visual and au-
ditory systems in the biology [1]. Especially physiologi-
cal measurements on the mammalian auditory system have
shown that the high dynamic range is achieved by a non-
linear dynamic compression where stronger amplifications
appear towards weaker input stimuli [1, 2]. Furthermore,
decreasing the input amplitude is associated with a nar-
rower bandwidth [2]. Since it has turned out that this non-
linear amplification characteristic can be described mathe-
matically by using the normal form equation of the super-
critical Andronov-Hopf bifurcation [3], several models of
the auditory system have been developed [4-8]. Besides
the hearing research, the so called Hopf-type amplifier also
shows great potential for a variety of other technical ap-
plications. Recent investigations clarified all parameter de-

pendencies of the input-output behavior of the Hopf-type
amplifier [9-12]. This investigations benefit from the par-
ticular feature that a sinusoidal input signal leads to a pure
sinusoidal output signal with the same frequency. This al-
lows the calculation of an algebraic equation describing the
nonlinear input-output behavior dependent on all given pa-
rameters and thus deeper insights in the nonlinear behav-
ior [10-12]. In general, the Hopf-type amplifier is based
on the resonance behavior near the onset of the Andronov-
Hopf bifurcation. Several realizations of such an ampli-
fier exist [1, 6-8]. Following the Hopf-type amplifier in
the continuous-time domain, we investigate in this contri-
bution the resonance behavior of the equivalent Neimark-
Sacker bifurcation in the discrete-time domain. We analyze
common features and differences with respect to parameter
dependencies. Due to its high dynamic range and its coinci-
dent input dependent adaptive bandwidth, this novel digital
nonlinear amplifier offers new possibilities in digital signal
processing.

2. Hopf-Type Amplifier

The generic Hopf-type amplifier is described by the
(truncated) normal form equation of the Andronov-Hopf
bifurcation. Using the wp-rescaled form [7] and adding the
excitation term a(t), the associated differential equation is
given by

z(1),a@®) e C. (1)

Here, i is the imaginary unit, £ € R denotes the bifurca-
tion parameter and wy is the natural frequency of oscilla-
tion. In general, the coefficient o is a complex quantity
0 = og+ioy. Omitting the excitation and using the substi-
tution z() = r(£)e'¥"” converts (1) into the polar coordinates

z=(u+1)woz + owp |2 2 — woa,

= wor(y + O'er), ¢ =wy+ O']a)()rz. 2)
Besides the fixed point at the origin, (2) shows the steady-
state solution r = y~#/o,. Thus, the amplitude of the
self-sustained oscillation depends on the real part of the
coefficient o, in contrast to the oscillation frequency,
@ = wy — oo/ og, which is affected by both, the real and
the imaginary part of o. Since the system should serve as
an amplifier, it must operate in that region, where the stable
fixed point is the only solution. This condition is fulfilled
by choosing the parameters to og < 0 and ¢ < 0. In this
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case, the system shows a supercritical Andronov-Hopf bi-
furcation at u = 0 [13]. Otherwise, for g > 0 and u > 0,
the single fixed point is unstable and the bifurcation is sub-
critical [13]. The description in polar coordinates (2) shows
the rotational symmetry around the equilibrium point r = 0.
This leads to the assumption, that the sinusoidal input sig-
nal a(f) = ape'® in (1) results in the sinusoidal steady-state
response z(t) = 20e@*¥) Hence, substituting a(f) and z(r)
in (1) allows the calculation of the input-output amplitude
relation

ap = \/(ﬂZo +o RZS)2 (1= o) 20 + ‘T’Zg)z’ )

as well as the phase relation (see [12]). Beside the well
studied dependencies of the Hopf-type amplifier response
regarding the bifurcation parameter y as well as the am-
plitude ay and frequency w of the excitation [3, 6, 7], re-
cent investigations focus on the nonlinearity coefficient
o [9, 11, 12]. The representation of o by the absolute
value & and the phase 6 as o = o + io; = 6e*® provides
deeper insights in the parameter dependencies of the input-
output behavior. The resulting effects on the steady-state
response by variation of & and ¢ are shown in Fig. 1. An
increase in J leads to a compression of the output ampli-
tude z9. Hence, & denotes a damping factor. The variation
of ¢ leads to a uniform rotation of the resonance structure
around the point (w = wg, u = 0). In this case, for the in-
terval 7/2 < § < 37/2 the Andronov-Hopf bifurcation is of
supercritical type. As shown by the dashed line at the cross
section u = —0.1, the variation of § causes hysteresis effects
in the input-output behavior, that have already been studied
for certain relations between o and o [9, 11]. With these
results, the parameter dependent input-output behavior is
fully understood.

3. Bifurcation-Type Amplifier Realizations

Further investigations of the response behavior of the
Hopf-type amplifier to more complicated transient input
stimuli first motivates the realization of cochlea specific
signal processing principles by means of electronics. Soft-
ware simulations possess the drawback that solving nonlin-
ear differential equations with high accuracy is time con-
suming and needs high computing power. Since recently,
attention has focused on the nonlinear amplification char-
acteristics of the Hopf-type amplifier, electronic realiza-
tions also become attractive for applications. One of those
areas refers to hearing aids, where the constraints are on
the one hand real-time processing with low latency and on
the other hand low power consumption. These conditions
also hold for other mobile applications like RF- and wire-
less communication systems. Another application field are
sensors and measurement systems, in which the accuracy
and dynamic range are the key parameters. In dependency
of the scope of application and its regarded conditions, it
must be chosen between an analog, digital or mixed-signal
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Figure 1: Steady-state response of the Hopf-type ampli-
fier by variation of 6 and . Excitation amplitude ay = 0.1,
characteristic frequency wy = 27 - 12kHz (w = 27f). In-
tersection lines for y = 0 (solid) and u = —0.1 (dashed).

realization. The first analog electronic Hopf cochlea circuit
was build up using discrete electronic components, such
as operational amplifiers, multipliers, capacitors and resis-
tors to emulate the differential equation by means of analog
computing [6,7]. Shortly after that, a Hopf-type amplifier
was built up using a LCR loop with a chain of diodes as
the essential nonlinear element [1]. Since this analog cir-
cuit represents a kind of van der Pol oscillator, we assume
high harmonic distortions based on our investigations [10].
To overcome the drawbacks of an analog realization, for in-
stance the variation and noise of the electronic components,
no tunable parameters or only in terms of voltages, exter-
nal electrical couplings etc., we constructed a first highly
flexible and scalable digital realization implemented on a
digital signal processor [8]. The main objectives were real-
time processing with low latency and low power consump-
tion [8]. Therefore, we choose the explicit 4M-order Runge-
Kutta method to compute (1) with a good compromise be-
tween accuracy and performance [8]. The digital process-
ing of the Hopf-type amplifier always underlies damping
and stability issues depending on the integration method.
Thus, we investigate in this contribution the resonance be-
havior of the Neimark-Sacker bifurcation in the discrete-
time domain, which is referred to as the Andronov-Hopf
bifurcation for maps [13].

4. Neimark-Sacker-Type Amplifier

The normal form of the Neimark-Sacker bifurcation [13]
with an added excitation term p is described by the map
ZHE%@+7+amﬂ+n zp€C. 4)

Here, o = og + io; = 6¢® is the nonlinearity coefficient
and 7y is the bifurcation parameter. For a discrete-time
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system with an equidistant time interval, the angle 6 can
be considered as normalized characteristic frequency 6 =
2nwo/wys = 2n fy/ fs with the characteristic frequency of the
system fy and the sampling frequency f;, (w = 27f). The
bifurcation behavior is similar to the Andronov-Hopf bifur-
cation in the continuous-time domain. Omitting the excita-
tion, the map (4) shows for oz < 0 a supercritical bifurca-
tion aty = 0 where a stable closed invariant curve grows for
v > 0 from a stable fixed point y < 0 which changes its sta-
bility at y = 0 [13]. Otherwise, for o > 0 and y < 0 a sta-
ble fixed point is surrounded by an unstable closed invari-
ant curve that vanishes by subcritical bifurcation at y = 0
where an unstable fixed point remains for y > 0 [13]. The
bifurcations occur, when the complex-conjugate pair of
eigenvalues of (4), which calculates to 4;, = e (1 + ),
crosses the unit circle at y = 0 [13]. Moreover, the eigen-
values also crosses the unit circle at y = —2. The charac-
teristics of this latter bifurcation become obvious by sub-
stituting the translation ¥ = —2 — vy into (4), that results in

z»—>ei€(1+5/—0'|z|2)z+p, z,p€eC, (®)]
with @ = 0 + 72n + 1) = 2x(fy = (n + /2) )/ fs» n € Ny.
Thus, the sign of the coefficient o inverts, which causes a
change between the supercritical and subcritical bifurcation
behavior. Additionally, the characteristic frequency of the
bifurcation shifts in terms of the half sampling frequency.
In general, since we are dealing with a discrete-time sys-
tem, the characteristic frequencies of the bifurcations are
periodic with the sampling frequency. This refers equally
to € in (4) which can be written in the more general form
0 = 2n(fy £ nfy)/fs,n € Ny. Here, it should be empha-
sized that for the reconstruction of a continuous-time sig-
nal, the Nyquist—Shannon sampling theorem must be hold.
Since the map (4) is rotationally symmetric, we assume for
—1 <y < 0 that a sinusoidal input signal p, = poe"” leads
to the sinusoidal output signal z,.; = zoe™*1VF+9) here n
denotes the iteration variable. Normalization of the sig-
nals on the sampling frequency 8 = 2nw/w, = 2nf/ f; and
substituting in (4) allows to calculate the input-output am-
plitude relation

Po =22+ (ch+07)z+ QN y+20k(1+9)5  (6)
-2 (1 +y+ 0'R23> cos(B —6) — 20'123 sin(B — 6)),

as well as the phase relation, which is neglected at this
point. The algebraic equation (6) describes the amplitude
7o of the output signal caused by a sampled sinusoidal exci-
tation dependent on all given parameters in (4). This allows
parametric studies to get deeper insights of the input-output
behavior of the Neimark-Sacker-type nonlinear amplifier.
In order to analyze common features and differences
against the Hopf-type amplifier in section 2, the resulting
output amplitude zj is plotted over the excitation frequency
f and the bifurcation parameter y as illustrated in Fig. 2.
Compared to the output amplitude of the Hopf-type am-
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Figure 2: Steady-state response of the Neimark-Sacker-
type amplifier. Excitation amplitude py = 0.1, charac-
teristic frequency fy = 12kHz, sampling frequency f; =
48 kHz and o; = 0. Intersection lines for u = 0 (solid) and
p = —0.1 (dashed). Variation of & in a), wider range of the
excitation frequency and parameter y with og = —1 in b).

plifier in Fig. 1, huge similarities in the input-output be-
havior can be noted. Figure 2a) shows, that the amplifi-
cation increases by shifting the bifurcation parameter to-
wards the bifurcation point y = 0. Additionally, & also de-
notes a damping factor. Considering a broader range for
the excitation frequency f and the bifurcation parameter y
in Fig 2b) points out, that (6) includes the aforementioned
periodicity of the resonance structures in terms of the sam-
pling frequency as well as the resonance structure of the
subcritical Neimark-Sacker bifurcation at y = -2 shifted
by fs/2. Here, it must be noted that the frequency range
of discrete-time systems consists of frequencies between
—fs/2 and f;/2. Thus, analytic signals with a frequency f
in the range of f;/2 < f < f; are mapped to analytic sig-
nals with the frequency f = f — f, in the range of negative
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Figure 3: Steady-state response of the Neimark-Sacker-
type amplifier. Excitation amplitude py = 0.1, charac-
teristic frequency fy = 12kHz, sampling frequency f; =
48kHz and o; = —1, og = 0. Intersection lines for u = 0
(solid) and u = —0.25 (dashed).

frequencies —f,/2 < f < 0, where the output amplitude
and the resonance structure is still the same due to the f;-
periodicity. The same applies for frequencies lower than
—fs/2 vice versa. To analyze the influence of the imaginary
part of o and to compare the behavior with the Hopf-type
amplifier in Fig 1, we plot the output amplitude zy of the
Neimark-Sacker system in Fig. 3 while using oz = 0 and
oy = —1. It is shown, that the behavior strongly differs.
Besides the rotation, a bending and connecting of the sub-
and supercritical resonance structures occur, which always
exists for o; # 0. The dashed intersection line at u = —0.25
discloses, that additionally to the hysteresis behavior, sepa-
rated solution sets arise. In general, this kind of ambiguities
are hard to find by numerical simulations or measurements.

5. Conclusion

In this work, we investigate a nonlinear amplifier that is
based on the normal form equation of the Neimark-Sacker
bifurcation in the discrete-time domain. Following the idea
of the Hopf-type amplifier, we can derive algebraic equa-
tions that describe the parameter dependent input-output
behavior regarding the properties of the discrete-time do-
main. This allows parametric studies which disclose am-
biguities in form of hysteresis effects and separated solu-
tion sets. Since the amplification characteristic shows huge
similarities to the Hopf-type amplifier, it could be preferred
to a digital realization of the latter one by means of an
integration method, which underlies damping and stabil-
ity issues as well as higher calculation effort. Our analy-
sis gives deeper insights in the input-output behavior of a
bifurcation-based amplifier in the discrete-time domain.
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