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Elliptic and parabolic bursting in a digital silicon neuron model

Takuya Nanami'' and Kazuyuki Aihara' and Takashi Kohno!

1, Graduate School of Engineering, The University of Tokyo
Tokyo, Japan
Email: nanami @sat.t.u-tokyo.ac.jp

Abstract—The digital spiking silicon neuron (DSSN)
model is a qualitative model designed to be implemented
efficiently using digital arithmetic circuits. In our previous
study, we extended this model to support the neuronal ac-
tivities of four cortical and thalamic neuronal classes. In
this paper, we further extended this model to reproduce
bursting activities of the ionic-conductance models of el-
liptic and parabolic burstings.

1. Introduction

Silicon neuronal networks simulate neuronal activity
with low power consumption and in high speed. They are
thought to be a way to realize an intelligent system com-
parable to the human brain. They can be implemented by
both analog and digital circuits. Analog circuit implemen-
tation consumes ultra-low power down to several nanowatts
per silicon neuron[1][2][3]; however, it involves the tech-
nical hurdles of fabrication mismatch and temperature de-
pendence when constructing a large-scale network. On the
other hand, digital circuit implementation does not have
this limitation because it is far less sensitive to these fac-
tors, though power consumption tends to be higher than
in analog circuit implementation. In particular, the field-
programmable gate array (FPGA) is popular because of
its low cost and high availability. Generally, digital sili-
con neuronal networks implemented on an FPGA perform
calculations at a higher speed than the biological real time
[41[5161[7].

The digital spiking silicon neuron (DSSN) model [8] is
a qualitative model designed to be implemented efficiently
using digital arithmetic circuits. The model simulates di-
verse neuronal activities with the fixed-point operation and
Euler’s method. Given appropriate parameter sets, this
model can reproduce the Class I and I in Hodgkin ’ s clas-
sification [9] as well as Class I* [10], which is defined by a
unique mathematical structure.

In our previous study[11], we extended this model to
support the neuronal activities of four cortical and tha-
lamic neuronal classes : namely, regular spiking (RS),
fast spiking (FS), intrinsically bursting (IB), and low-
threshold spiking (LTS). These classes are described by
ionic-conductance models [12] that can accurately repro-
duce neuronal activities. Moreover, by measuring the Cy
and Ly [13] statistics of the spike sequences, we confirmed
that DSSN and ionic-conductance models have the same

statistical properties in each neuron class.

In this work, we realized the elliptic and parabolic burst-
ings with the DSSN model. For the elliptic bursting, we
referred to an ionic conductance model in [14]. Wang ob-
served experimental data from layer V pyramidal neurons
in the cat sensory motor cortex and modeled them with
ionic conductance type equations. We adopted the three-
variable DSSN model and determined an appropriate pa-
rameter set to mimic Wang’s ionic conductance model in
response to input current with various magnitudes. For
the parabolic bursting, we developed a four-variable DSSN
model and found a suitable parameter set that replicates the
behavior of a model in [15]. The Izhikevich model[16]
which is popular in silicon neuronal networks cannot re-
produce a parabolic bursting because it requires at least
four state variables. The remainder of this paper is orga-
nized as follows. Section 2 introduces our neuron model.
The simulation result is presented in Section 3. Section 4
summarizes the work and suggests ideas for the future.

2. Method

2.1. DSSN model

The DSSN model [8] is a neuron model that can simulate
multiple classes of neuronal activities by Euler’s method
with fixed point operation. We adopted the 3-variable
DSSN model which is expressed as follows:
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Figure 1: Bifurcation diagram of the DSSN model corre-
sponding to the elliptic bursting. The fast subsystem (the v — n
system) exhibits a subcritical Hopf bifurcation. Bistability com-
posed of a stable spiral and a stable limit cycle is seen.
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Figure 2: Bifurcation diagram of the DSSN model corre-
sponding to the parabolic bursting. The fast subsystem exhibits
a saddle-node on invariant circle bifurcation.

where v corresponds to the membrane potential, and »n and
q are the fast and slow variables, respectively, that ab-
stractly describe the activity of the ion channels. The pa-
rameter Iy is a bias constant and Iy, represents the in-
put stimulus. Parameters ¢, € and 7 control the time con-
stants of the variables. Parameters r,, a,, b,, and c¢,, where
x = fn, fp,gn, gp,hn, or hp, are constants that adjust the
nullclines of the variables. All of the variables and con-
stants in this qualitative model are purely abstract with no
physical units. Most existing qualitative neuronal models
replicate the spiking dynamics by a cubic variable term
[17][18][19]. Because multiplication consumes significant
circuit resources in a digital arithmetic circuit, the DSSN
model adopts a piecewise quadratic function so that its nu-
merical integration step includes only one multiplication
between variables.

The elliptic bursting can be realized using a slow vari-
able, but the parabolic bursting requires at least two slow
variables. Then, we extended the DSSN model by modify-
ing Eq.(1) and adding Eq.(8) as follows:
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Figure 3: Waveforms of (a) the Wang ’s and (b) the DSSN
models corresponding to the elliptic bursting. Both models
generate periodic burst firing in response to (top) a weak input,
(middle) a medium input, and (bottom) a strong input.

where u is a slow variable that abstractly describes the ac-
tivity of depolarizing slow ion channels.
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Figure 4: Statistical properties of Wang’s ionic conductance
and DSSN models corresponding to the elliptic bursting. The
x—axis corresponds to the duration of a silent phase. The y—axis
represents the number of spikes in a spiking phase.

2.2. Parameter tuning

To reproduce the elliptic bursting, we first tuned the pa-
rameters of the fast subsystem (the v — n system) to realize
the subcritical Hopf bifurcation that has a bistable regime
including a stable spiral and a stable limit cycle. Figure 1
shows the bifurcation diagram of the fast subsystem. We
conducted bifurcation analysis while varying slow variable
q as the parameter. The bistable area and slow state vari-
able g cause bursting and resting states. Secondly, we tuned
the remaining parameters that control the dynamics of the
slow subsystem in order to reproduce the neuronal activity
of Wang’s ionic conductance model precisely.

To reproduce the parabolic bursting, the fast subsystem
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Figure 5: Waveforms of (a) the Plant’s and (b) the DSSN
models corresponding to the parabolic bursting. Both models
generate periodic burst firing in response to (top) a weak input,
(middle) a medium input, and (bottom) a strong input.
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Figure 6: The g — u plane. Above the dotted line, the model is
in the spiking phase and the trajectory is on the stable limit cycle.
Below the dotted line, the model is in the silent phase and the
trajectory is on the stable node.

of the model does not require a bistable regime. Bursting
and resting states are generated by two slow state variables.
We first determined the parameters that control the dynam-
ics of the fast subsystem. The bifurcation diagram is shown
in Fig.2. The fast subsystem exhibits a saddle-node on in-
variant circle bifurcation. Second, we tuned the remaining
parameters that control the dynamics of the slow subsystem
in order to reproduce the neuronal activity of Plant’s ionic
conductance model precisely.

3. Result

3.1. Elliptic bursting

Figure 3 shows waveforms of Wang’s model and the
DSSN model corresponding to the elliptic bursting in re-
sponse to the input stimulus of several magnitudes. We
could not find a parameter set for the DSSN model that
qualitatively reproduce the activity of the Wang’s model.
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Figure 7: Statistical properties of Plant’s ionic conductance
and DSSN models corresponding to the parabolic bursting.
The x—axis corresponds to the duration of a silent phase. The
y—axis represents the number of spikes in a spiking phase.

With both models the number of spikes in a spiking phase
increases and the period of a silent phase decreases as the
stimulus intensity increases.

To verify the qualitative similarity, we visualized these
characteristics by plotting the duration of a silent phase on
the x—axis and the number of spikes in a spiking phase on
the y—axis by changing the stimulus intensity (Fig.4). Note
that the duration of a silent phase is the dominant compo-
nent of the bursting period. With both models, the number
of spikes decreases as the bursting period increases and two
inflection points (circles in the figure) are seen. We counted
spikes when the membrane potential exceeds a threshold
value, which was set as V = —20mV in Wang’s model and
v = 0.1 in the DSSN model.

3.2. Parabolic bursting

Figure 5 shows waveforms of Plant’s model and the
DSSN model in the parabolic bursting mode in response
to the input stimulus with several magnitudes. With both
models, the number of spikes in a spiking phase increases
and a period of the silent phase decreases as the stimulus in-
tensity increases. And they share the spike frequency adap-
tation within a spiking phase.

The transition of the two slow variables is plotted on the
q — u plane in Fig.6. Above the dotted line, the model is
in the firing mode and the trajectory is on the stable limit
cycle. Below the dotted line, the model is in the resting
mode and the trajectory is on the stable node.

We evaluated the qualitative similarity between the be-
havior of the DSSN and Wang’s models by the same plot
as Fig.4. They share the negative slope with three inflection
points (circles in the figure) (Fig.7).

3.3. Device utilization

We compiled the DSSN models for Virtex-7
XC7VX690T FPGA using Xilinx Vivado Design Suite.
Device utilization is listed in Table 1. In the elliptic burst-
ing mode, we used 18-bit signed fixed point with 14-bit
fraction part for all variables. In the parabolic bursting
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mode, 24-bit signed fixed point with 20-bit fraction part
was required to keep high-precision. The DSP unit was
used to calculate v2. Table 1 also lists the resouce usage
in [20] which implemented a fully-connected network
of 1024 neurons on a Virtex-5 xc5vIx330t FPGA. They
adopted the Izhikevich model and used single or double
precision floating-point operations. The resources listed in
the table is for calculation of 1024 neurons. It is clear that
their circuit consumes far less resources than ours. The
difference between the resouce requirements for our circuit
and the circuit in [20] is the penalty required to dissolve
the limitations in the integrate-and-fire-based models.

4. Conclusion

In this work, we tuned parameters of the three-variable
DSSN model for the elliptic bursting and realized qual-
itatively similar behavior to that of Plant’s model. A
slow variable was supplemented to the three-variable
DSSN model and its parameters were tuned to realize
the parabolic bursting qualitatively similar to that of the
Wang’s model. The similarity was verified by measuring
the duration of the resting state and the number of spikes
in the bursting. The DSSN model was numerically solved
by Euler * s method (t=0.0001[s]). Previous studies have
applied the DSSN model to the Class I and I in Hodgkin’s
classification, the square wave bursting and four cortical
and thalamic neuron classes. Here we extended and/or con-
figured the DSSN model to match the elliptic bursting and
parabolic bursting that are not listed in the repertoire of the
Izhikevich model which is a most popular simplified neu-
ron model. It is not elucidated completely what properties
of the neuronal activities are playing the key roles in the
information processing in the brain. Our models intend to
contribute to the “analysis by thynsesis” approach to this
question by pursuing qualitative reproduction of as many
characteristics of the neuronal activities as possible. In fu-
ture work, we will improve the equations and parameters to
reproduce the elliptic and parabolic burstings in the Wang’s
and the Plant’s models more precisely. For parameter tun-
ing, some heuristic methods such as differential evolution
algorithms may be utilized as in [21].

Table 1: Device utilization

Name | Elliptic bursting | Parabolic bursting | Available | Thomas(Single) | Thomas(Double) |
FF T10(0.01%) 228(0.02%) 866,400 7781 16293
LUTs 1320(0.3%) 3318(0.8%) 433,200 6261 12943
DSPs 1(0.03%) 1(0.03%) 3600 16 96
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