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Abstract—We consider chaos and bifurcation phe-
nomena near the Chenciner bubbles generated by
two coupled piecewise-constant oscillators (PWCOs)
driven by a rectangular wave force. Because vector
fields of PWCOs are piecewise-constants, it is rela-
tively easy to perform rigorous analysis. For instance,
a calculation algorithm for conducting Lyapunov ex-
ponent in autonomous piecewise-constant system has
been proposed. By using extension of the algorithm
for non-autonomous system, two-parameter Lyapunov
diagrams are conducted. These results confirmed that
Chaos is observed in the neighborhood of Chenciner
bubbles. Furthermore, we observed the Farey sequence
in the experimental measurements.

1. Introduction

Quasi-periodic bifurcations of high-dimensional tori
have attracted intensive research interest in recent
years. For instance, to observe bifurcation struc-
tures in discrete-time dynamics, Sekikawa et al. an-
alyzed a coupled delayed logistic map that generated
complicated quasi-periodic bifurcations [1]. Infinitely
many of 2-torus generating regions existed in a 3-torus
generating region, wherein 2-torus generating regions
extend in numerous directions like a“ cobweb” in
parameter space called Arnold resonance web. The
generation pattern of 2-torus regions is explained by
the Farey sequence [2]. In addition, periodic solu-
tions emerge at the intersections of two different 2-
torus, which called Chenciner bubbles. The study of
Arnold resonance webs is usually performed by Lya-
punov analysis, and has been rapidly progressings.
However, the main concerns for observing Arnold res-
onance webs in continuous-time dynamics are the pre-
cision and computational cost. To analyze bifurcation
structures in continuous-time dynamics more precisely,
Tsubone et al. proposed and analyzed piecewise-
constant oscillator (PWCOs) [3]. Because vector fields
of PWCOs take only constant values piecewisely, it is
relatively easy to perform rigorous analysis. Hence,
using the same computational cost similar to that of

Figure 1: Piecewise-constant oscillator

discrete-time dynamics, Inaba et al. succeed in observ-
ing Arnold resonance webs with high resolution in a
driven continuous-time electric circuit of which govern-
ing equation is represented by two coupled piecewise-
constant oscillators (PWCOs) driven by a rectangu-
lar wave force [4]. However, they obtained the Lya-
punov exponents by using an ad-hoc manner. It could
be difficult to apply this procedure in higher dimen-
sional piecewise-constant dynamics. In this study, we
focus on chaos and bifurcation phenomena near the
Chenciner bubbles generated in a driven continuous-
time electric circuit presented in [4]. The analysis is
performed by using a calculation algorithm for the rig-
orous solutions in non-autonomous piecewise-constant
system, which extended the algorithm in autonomous
piecewise-constant system [5]. By using this algo-
rithm, two-parameter Lyapunov diagrams are easily
conducted. According to the numerical experiment,
Chaos is observed in the neighborhood of Chenciner
bubbles. Moreover, the Farey sequence is verified by
laboratory measurements.

2. Piecewise-constant oscillator

In this study, we consider the piecewise-constant cir-
cuit in Fig. 1. This circuit comprises two piecewise-
constant hysteresis ocillators and a rectangular wave
current source. The voltage across two capacitors C1

and C2 is v1, v2, respectively. H1(v1) and H2(v2) are
the two hysteresis elements. The waveform of the rect-
angular wave source with amplitude I and period 2T0

- 152 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016



is shown in Fig. 2. From Kirchhoff’s law, the govern-
ing equation is represented as follows.

C1C2 + C1C3 + C2C3

C3

dv1

dt

=
C2 + C3

C3
H1(v1) + H2(v2) + I1(t),

C1C2 + C1C3 + C2C3

C3

dv2

dt

=
C1 + C3

C3

(
H2(v2) + I1(t)

)
+ H1(v1).

(1)

Via rescaling,

v1 = Vth1x, v2 = Vth2y, t = γτ,
h1(x)Ih1 = H1(Vth1x), h2(y)Ih2 = H2(Vth2y),

γIh1C3

Vth1(C1C2 + C1C3 + C2C3)
= 1,

Ih2

Ih1
= D1,

Vth1

Vth2
= D2,

I

Ih1
= B,

C2 + C3

C3
= D3,

C1 + C3

C3
= D4,

T0

γ
= T,

(2)

the normalized equation is:

ẋ = D3h1(x) + D1h2(y) + S(τ),
ẏ = D2h1(x) + D2D4

(
D1h2(y) + S(τ)

)
.

(3)

where h1(x) and h2(y) are the normalized hysteresis
loops, of which characteristics are shown in Fig. 3(a)
and Fig. 3(b), respectively. The solution on the up-
per branch (h1(x) = 1) jumps to the lower branch
(h1(x) = −1) when x increases and reaches the point
S1. In addition, the solution on the lower branch
(h1(x) = −1) jumps to the upper branch (h1(x) = 1)
when x decreases and reaches the point S2. The solu-
tion on the branch h2(y) behaves in the same manner.
Periodic external force S(τ) is expressed as follow.

S(τ) =
{

B for nT ≤ τ < (n + 1)T,
−B for (n + 1)T ≤ τ < (n + 2)T.

(4)

where n is integer. B and T is the amplitude
and half-periodic of the rectangular wave, respec-
tively. The circuit dynamics include six parameters
D1, D2, D3, D4, B, and T . Note that because of the
characteris of h1(x) and h2(y), throughout this study,
we restrict our attention to the case when −1 ≤ x(τ) ≤
1 and −1 ≤ y(τ) ≤ 1 hold for ∀τ . In our assumption,
the trajector in vector fileds will hit boundary lines,
i.e, x = 1, x = −1, y = 1, or y = −1.

3. Derivation of Lyapunov exponents in a
driven piecewise-constant oscillator

In this section, we explain the procedure for deriv-
ing the Lyapunov exponents by introducing the ex-
plicit expression of the solution. In our previous work,
the basic algorithm to calculate Lyapunov exponents

Figure 2: Rectangular wave

(a) (b)

Figure 3: Hysteresis loops: (a) h1(x) and (b) h2(y).

in autonomous piecewise-constant system is proposed
[5]. However, the algorithm is not suitable for the
non-autonomous systems, because it can not manage
enforced switching depending on external force. To
make it easy to conduct rigorous solutions in non-
autonomous system, we assume τ in Eq. (3) as a
variable. Hence, we can rewrited Eq. (3) in the au-
tonomous form as follows.

ẋ = kx = D3h(x) + D1h(y) + S(z)
ẏ = ky = D2h(x) + D2D4

(
D1h(y) + S(z)

)
ż = 1.

(5)

We consider the solution where the initial condition
at z0 is x0 = (x0，y0，z0)>. When the trajectory
started at z0 hits a boundary line, i.e., either one of
x = 1, x = −1, y = 1, y = −1, z = T, or z = 2T at the
time z1, the solution of Eq. (5) is expressed as follows.

x1 = x0 + k(z1 − z0), (6)

where k = (kx, ky, 1)> is vector fields presented by Ta-
ble 1. To conduct the Jacobian matrix in a systematic
manner, a normal vector n> is introduced. By using
this normal vector, the (z1−z0) in Eq. (6) is obtained

z1 − z0 =
n>x1 − n>x0

n>k
(7)

Note that, at the time z1 the trajectory is on boundary
line. Thus, n>x1 = D is a constant value presented
in Table 2. For example, when the solution hits x = 1,
because the normal vector is n = (1 0 0)>, the scalar
D is D = 1. In addition, substituting Eq. (7) into Eq.
(6) yields the following equation.

x1 =
(

I − kn>

n>k

)
x0 +

kD

n>k
. (8)
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Table 1: Values of k

k Regions(
D3 + D1 + B,D2 + D2D4(D1 + B), 1

)>
h1(x) = 1, h2(y) = 1, 0 ≤ z < T(

− D3 + D1 + B,−D2 + D2D4(D1 + B), 1
)>

h1(x) = −1, h2(y) = 1, 0 ≤ z < T(
D3 − D1 + B,D2 + D2D4(−D1 + B), 1

)>
h1(x) = 1, h2(y) = −1, 0 ≤ z < T(

− D3 − D1 + B,−D2 + D2D4(−D1 + B), 1
)>

h1(x) = −1, h2(y) = −1, 0 ≤ z < T(
D3 + D1 − B,D2 + D2D4(D1 − B), 1

)>
h1(x) = 1, h2(y) = 1, T ≤ z < 2T(

− D3 + D1 − B,−D2 + D2D4(D1 − B), 1
)>

h1(x) = −1, h2(y) = 1, T ≤ z < 2T(
D3 − D1 − B,D2 + D2D4(−D1 − B), 1

)>
h1(x) = 1, h2(y) = −1, T ≤ z < 2T(

− D3 − D1 − B,−D2 + D2D4(−D1 − B), 1
)>

h1(x) = −1, h2(y) = −1, T ≤ z < 2T

It is clear from Eq. (8) that the local Jacobian matrix
A is represented by

A =
dx1

dx0
= I − kn>

n>k
. (9)

Then, if the solution hits x = 1 or x = −1,

A0 =

 0 0 0
−ky/kx 1 0
−1/kx 0 1

 , (10)

if the solution hits y = 1 or y = −1,

A1 =

 1 −kx/ky 0
0 0 0
0 −1/ky 1

 , (11)

and, if the solution hits z = T or z = 2T ,

A2 =

 1 0 −kx

0 1 −ky

0 0 0

 . (12)

Note that the Jacobian matrices A0, A1, and A2 in-
cludes an all zero row. Therefore, one of eigenvalues
of these matrices is zero and the corresponding minu-
mum Lyapunov exponent is −∞. Hence, we define the
first and the second Lyapunov exponent as follows.

λ1 ' 1
N

M+N∑
j=M+1

ln
∣∣∣Aj

ie
j
1

∣∣∣
λ1 + λ2 ' 1

N

M+N∑
j=M+1

ln
∣∣∣Aj

ie
j
1 × Aj

ie
j
2

∣∣∣, (13)

where ej
1 and ej

2 are orthonomal bases. Aj
i (=

dxj

dxj−1
)

is the Jacobian matrix, which is one of A0, A1, and
A2. M and N are integers. We use a sufficiently
large N after removing the transient state. Because
the precision and speed of calculation of piecewise-
constant oscillator is excellent, it is desirable to choose

Table 2: Values of D
n> D

x = 1 (1 0 0) 1
x = −1 (1 0 0) −1
y = 1 (0 1 0) 1
y = −1 (0 1 0) −1
z = T (0 0 1) T
z = 2T (0 0 1) 2T

M as large as N . It is reasonable to argue that for
M = N = 2 × 107the two Lyapunov exponents con-
verge to zero. Therefore, we consider as λi = 0 if the
calculated λi satisfies |λi| < 1/106.

4. Chenciner bubbles and Chaos generated in
a piecewise-constant circuit

In this section, we fix the coupling parameters
C3/C1 = C3/C2 = 0.01 that correspond to D3 = D4 =
101. We choose D1 and T as variables and set the pa-
rameters D2 = 1.1 and B = 0.005. Fig. 4 shows
two-parameter Lyapunov diagram. In this figure, a
region generating a periodic solution marked in red
where the oscillation frequencies of the two hysteresis
oscillators and the forcing term are synchronized. This
region can be denoted as the Chenciner bubbles. Re-
gions generating two-dimensional tori (λ1 = 0, λ2 < 0)
and three-dimensional tori (λ1 = 0, λ2 = 0) are maked
in blue and yellow, respectively. Regions generating
chaos are marked in black. As seen in Fig. 4 (a), the
Arnold resonance web is clearly observed. Moreover,
chaos is inevitably observed near the periodic solution
generating region around which the regions generating
three-dimensional tori emanate. Our numerical result
shows against the remark given by Baesens et al. [6]
that if the coupling parameter of dynamics equation is
small, chaos generations cannot be observed.

To observing Farey sequence in the circuit, we set
C3/C1 = C3/C2 = 1/10, i.e., D3 = D4 = 11. The nu-
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(a) (b)

Figure 4: Lyapunov diagram: (a) D2 = 1.1, D3 =
D4 = 101, B = 0.005; (b) D1 = 0.5, D3 = D4 =
11, B = 0.005.

merically obtained two-parameter diagram is shown
in Fig. 4 (b). In this case, the regions generating two-
dimensional tori are relatively thin. Fig. 5 (a.1), (a.2),
(a.3) show the two-dimensional tori on the section Π
which are obtained at the parameter values denoted
by Q1, Q2 and Q3 in Fig. 4 (b), respectively. Section
Π obtain x, y values every periodic of rectangular wave
force. The number of times the two torus touches the
left boundary is denoted as L. In addition, the num-
ber of times it touches the upper boundary is denoted
as U . In Fig. 5 (a.1), L = 1 and U = 0, and in
Fig. 5 (a.3), L = 2 and U = 1. Between the parameter
values at which Fig. 5 (a.1) and Fig. 5 (a.3) are ob-
tained on the two-parameter Lyapunov diagram, the
two-dimensional torus attractor with L = 1 + 2 = 3
and U = 0 + 1 = 1 exists as shown in Fig. 5 (a.2).
Fig. 5(b.1), (b.2), and (b.3) show the associated ex-
perimental results. Remarkable agreement can be con-
firmed, and Farey sequence is observed.

5. Conclusion

We discussed Chaos and bifurcation phenomena
in a driven piecewise-constant oscillator. We used
a calculation algorithm for the rigorous solutions in
non-autonomous piecewise-constant system to conduct
Lyapunov analysis. The explicit representation of
the procedure can be applicable to a wide class of
piecewise-constant driven circuit. Chaos is observed
in the neighborhood of Chenciner bubbles. More-
over, the Farey sequence is observed in the experimen-
tal measurements. In future work, we plan to dis-
cuss quasiperiodic bifurcation in higher dimensional
piecewise-constant oscillator.
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