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Abstract—In this study, we consider phase-inversion
waves in coupled piecewise-constant oscillators as a ladder.
A nonlinear phenomenon called phase-inversion wave is a
kind of wave propagation phenomena, and the phase states
of the waves are propagated to next oscillator in succes-
sion. In this paper, we analyzed the stability of the phase-
inversion waves using the largest Lyapunov exponent. As
a result, we found out that phase-inversion waves is unsta-
ble and chaos, because the largest Lyapunov exponent is
positive value.

1. Introduction

There are many reports for analysis of synchroniza-
tion phenomena of coupled oscillators [1–5]. Suzuki and
Tsubone have confirmed that piecewise-constant oscilla-
tors coupled by hysteresis elements exhibit co-existence of
in-phase and anti-phase synchronization [1]. They also an-
alyzed the stability of the system by Lyapunov exponents.
Yamauchi, Nishio, and Ushida have discovered wave prop-
agation phenomena called phase-inversion waves of cou-
pled van der Pol oscillators [2, 3]. The phase-inversion
waves are wave propagation phenomena, and the phase
states of the waves are propagated to next oscillator in suc-
cession. It is very important to analyze the phenomena,
because it is similar to propagation phenomena of electri-
cal information in an axial fiber of nervous systems. How-
ever, if nonlinearity of van der Pol oscillators are strong,
the analysis often becomes hard. The simulation requires
high calculation cost. When we carry out Lyapunov anal-
ysis for high dimensional system, sometimes very long
time is needed. Therefore, confirmation of phase-inversion
waves in rigorous sense and detailed stability analysis of
the systems which generate the phase-inversion waves have
not been discussed. Accordingly, we consider piecewise-
constant oscillators. The oscillators are simple systems and
the analysis is relatively easy. The systems have piecewise-
constant vector fields, and the solutions are piecewise-
linear. Hence, we have only to focus on the borders of
switching of the vector fields, we can determine the rig-
orous solutions [1]. Using the calculation method [1], we
can derive the rigorous solution with low calculation cost.

In this paper, we show phase-inversion waves of coupled
three piecewise-constant oscillators. We also analyze the
stability of the phase-inversion waves in our system by the
largest Lyapunov exponent. As a result, we found out that
phase-inversion waves is chaos, because the largest Lya-
punov exponent is positive value. It can be obtained rigor-
ously from computer-aided analyzing procedure by using
rigorous solutions.

2. Circuit model

2.1. A Piecewise-Constant Oscillator

Figure 1 shows a circuit model of a piecewise-constant
oscillator.

Fig. 1 Cicuit model of a piecewise-constant oscillator.
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(a)VCCS with hysteresis
characteristic.

1

-1

(b)VCCS with Signum-like
function.

Fig. 2 Symbols and nonlinear characteristics of VCCSs.

The circuit equations of the system are described as fol-
lows. 

C
dv1

dt
= I1 · H(v1) + I3 · sgn(v2),

C
dv2

dt
= I2 · H(v1),

(1)
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where I1, I2 and I3 are absolute values of output cur-
rents of hysteresis or sgn Voltage Controlled Current
Sources(VCCSs). We consider the following conditions.

I2 = −I3, I1 · I2 < 0. (2)

The conditions (2) guarantees non-constrained behaviors.
H(vin) and sgn(vin) are hysteresis and signum characteristic
respectively, as shown in Fig. 2. We use following dimen-
sionless variables and parameters

τ =
I2

C · vth
t, x =

v1

vth
, y =

v2

vth
, α = − I1

I2
. (3)

Then, we can rewrite the circuit Eq. (1) as following dy-
namics, {

ẋ = −αh(x) − sgn(y)
ẏ = h(x),

(4)

where “·” denote differentiation by normalized timeτ, h(X)
shows normalized hysteresis. IfX reaches 1, the output
switches from -1 to 1, and ifX reaches -1, output switches
from 1 to -1. The system has only one parameterα. In
order to oscillate, we consider the following conditions [1].

0 < α < 1. (5)

Figure 3 shows a rigorous solution and the corresponding
laboratory measurement.

x

y

(a)Rigorous solution.

v1

v2

(b)Laboratory measurement.

Fig. 3 Rigorous solution and laboratory measurement of a
piecewise-constant oscillator.

2.2. Piecewise Constant Oscillators Coupled by hys-
teresis element as a Ladder

We consider piecewise-constant oscillators coupled by
hysteresis elements as a ladder. Figure 4 shows circuit
model of the coupled piecewise-constant oscillators. This
system has following dynamics.

[First oscillator] (m= 1){
ẋ1 = −αh(x1) − sgn(y1) − γh(x1 − x2)
ẏ1 = h(x1),

(6)

[Middle oscillator] (2≤ m≤ N − 1)
ẋm = −αh(xm) − sgn(ym)

−γh(xm − xm+1) + γh(xm−1 − xm)
ẏm = h(xm),

(7)

P.W.C.
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→ → → → → →

Fig. 4 Circuit model of coupled piecewise-constant
oscillators by hysteresis elements.

[Last oscillator] (m= N){
ẋN = −αh(xN) − sgn(yN) + γh(xN−1 − xN)
ẏN = h(xN).

(8)

The system has two parameters,α andγ. N is number of
oscillators, andγ is a coupling parameter. In this paper, we
discuss the case ofN = 3. In our previous study, we ob-
served phase-inversion waves in this system [5]. Figure 5
shows a rigorous solution and the corresponding laboratory
measure ment.

x1-x2

Time 350[ /div]

x2-x3

(a)
Rigorous solution.

v11-v21

Time 5[ms/div]

v21-v31

(b)
Laboratory measurement.

Fig. 5 Phase-inversion waves in rigorous solution and
laboratory measurement

Figure 5 represents the difference between output of ad-
jacent oscillators. Small waves are in-phase, and large
waves are anti-phase synchronization. We can observe
changing phase state, namely phase-inversion waves.
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3. Calculation of rigorous solution and Lyapunov ex-
ponent

In piecewise-constant system, we can obtain the rigor-
ous solution directly by noting borders of vector fields [1].
The borders are points thath or sgn switches. For easy to
explain, we introduce the algorithm for solution be given
a piecewise-constant oscillator in this section. A trajectory
starts initial pointx0 = (x0, y0), and goes straight forward
to borderE in accordance with vector fielda(i) in Table 1.
A time to reach the borderτ is obtained by

τx =
Ex(i) − x

ẋ
, τy =

Ey(i) − y

ẏ
, (9)

whereτ is positive and minimum value. We calculatexk+1

usingτ andxk.

xk+1 = xk + a(ik) · τ. (10)

In the same manner, we can also obtainx2, x3... and
derivate rigorous solution, like Fig. 6.

Table 1: Local vector fields and borders fori.

i h(x) sgn(y) a(i) Ex(i) Ey(i)

0 1 1 t(−α − 1,1) −1 0
1 1 −1 t(−α + 1,1) −1 0
2 −1 1 t(α − 1,−1) 1 0
3 −1 −1 t(α + 1,−1) 1 0

x=-1

x=1

Fig. 6 Trajectory of a piecewise-constant oscillator.

We can calculate Lyapunov exponent using this algo-
rithm for the rigorous solution. Because Eq. (10) is linear
mapping equation, deforming right side of Eq. (10) and
differentiating byxk, we can obtain Jacobian matrixJk.

xk+1 = xk + a(ik) · τ.
= A · xk, (11)

Jk =
∂xk+1

∂xk
(12)

We calculate Lyapunov exponents by applyingJk to Shi-
mada algorithm. [6] In this report, we calculated the largest
Lyapunov exponentλ1. This value is given by

λ1 = lim
L→108

1
L

L∑
k=1

ln∥Jke
k
1∥,

ek+1
1 =

Jkek
1

∥Jkek
1∥
,

(13)

whereek is orthonormal base, andL is iteration number.
We setL to 108 as large enough.

4. Lyapunov analysis

Figure 7 is a two-parameter bifurcation diagram. The
vertical axis isα and the horizontal axis isγ. In the figure,
black and gray regions showλ1 > 0. White regions show
λ1 = 0. Reds showλ1 < 0. We defined that|λ1| < 10−7 is
λ1 = 0 [7].

Fig. 7 Two-parameter bifurcation diagram inγ − α plane.

In gray regions, we can observe phase-inversion waves.
On the other hand, we can observe in-phase or almost in-
phase synchronization phenomena in white regions.

Next, we compared waveforms in gray and white re-
gions. Figure 8 and 9 show output differences in (γ, α) =
(−0.03,0.2) and (γ, α) = (−0.03,0.3).

Fig. 8 The difference between output of adjacent
oscillators inλ1 > 0(Gray region).

In Fig. 8, phase-inversion wave happens and the largest
Lyapunov exponent isλ1 = 7.3421× 10−3 > 0. On the
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Fig. 9 The difference between output of adjacent
oscillators inλ1 ≃ 0(White region).

other, in-phase synchronization happens and the largest
Lyapunov exponent isλ1 = 1.2437× 10−9 ≃ 0 in Fig.
9. Figure 9 looks like periodic motion. However, when we
confirm waveforms of longtime, we found that this is non-
periodic motion. In Fig. 10, we can see that waveforms

Fig. 10 Longtime waveforms of Fig. 9.

change subtly.
We show output differences in other parameters. Figure

Fig. 11 The difference between output of adjacent
oscillators in the other parameters (1).

11 and 12 show output differences in (γ, α) = (−0.02,0.2)
and (γ, α) = (−0.01,0.1). The largest Lyapunov exponents
are both positive value. Thus, we can observe another type
phase-inversion waves, but we can not divide these phe-
nomena with the largest exponent.

5. Conclusion

In this paper, we considered phase-inversion waves of
three piecewise-constant oscillators coupled by hysteresis

Fig. 12 The difference between output of adjacent
oscillators in the other parameters (2).

elements as a ladder. We carried out stability of phase-
inversion waves with the largest Lyapunov exponent. As
a result, we found that phase-inversion waves are unstable
and chaos because the largest Lyapunov exponent is posi-
tive value. Our future tasks are calculating the 2nd and 3rd
largest Lyapunov exponents and analyzing in more detail
by using these numbers.

References

[1] K. Suzuki and T. Tsubone, “In-Phase and Anti-Phase
Synchronization Phenomena in Coupled Systems of
Piecewise Constant Oscillators”, IEICE Trans. Funda-
mentals, Vol. E98-A No. 1, pp. 340-353, (2015)

[2] M. Yamauchi, Y. Nishio, and A. Ushida, “Phase-Waves
in a Ladder of Oscillators”, IEICE Trans. Fundamen-
tals, Vol. E86-A, No. 4, pp. 891-899, (2003)

[3] M. Yamauchi, Y. Nishio, and A. Ushida, “Analysis
of Phase-Inversion Waves in Coupled oscillators Syn-
chronizing at In-and-Anti-Phase”, IEICE Trans. Fun-
damentals, Vol. E86-A, No. 7, pp. 1799-1806, (2003)

[4] D. P. Rosin, D. Rontani, and D. J. Gauthier, “Synchro-
nization of Boolean phase oscillators”, Phys. Rev. E
89, 042907, (2014)

[5] R. Hirota and T. Tsubone, “Analysis of Phase-
Inversion Waves in Coupled Piecewise Constant Oscil-
lators as a Ladder”, Proc. of NOLTA2015, pp.101-104,
(2015)

[6] I. Shimada, and T. Nagashima, “A Numerical Ap-
proach to Ergodic Problem of Dissipative Dynamical
Systems”, Prog. Theor. Phys., Vol. 61, No. 6, pp. 1605-
1616, (1979)

[7] S. Hidaka, N, Inaba, K, Kamiyama, M, Sekikawa, and
T, Endo, “Bifurcation structure of an invariant three-
torus and its computational sensitivity generated in s
three-coupled delayed logistic map”, NOLTA, vol.6
No. 3, pp. 433-442, (2015)

- 349 -


