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Abstract– We investigate the transition from a fixed 

point state to chaos in a recurrent neural network. We focus 
on the intensity of external input to the network and show 
that the transition occurs when the external input increases. 
On the other hand, the standard deviation of the external 
input seems to have little impact on the transition.  
 
1. Introduction 
 

Neural networks with random connections have been 
receiving increasing attention. In the framework known as 
“reservoir computing” (Jaeger, 2001; Maass et al., 2002), 
such networks are found computationally powerful due to 
their nonlinear nature, where the dynamics is chaotic. 
However, the dynamics should not deviate far from an 
ordered one, since neural networks are required to hold 
useful information temporarily. The transition between 
ordered and chaotic states in recurrent neural networks is 
therefore crucial for flexible real-time computation.  

An interesting work by Rajan et al. (2010) showed that 
the ongoing chaos can be suppressed by periodic external 
input with large magnitude. Recently, Kadmon and 
Sompolinsky (2015) developed systematically the mean 
field theory for the transition between a fixed point and 
chaotic fluctuation in randomly connected networks which 
consist of multiple subnetworks. Their results revealed the 
critical role of the synaptic gain and the shape of input-
output transfer function in the transition of the dynamics to 
chaos. For large external input, the transfer function they 
used also predicts a suppression of chaos due to saturation. 

However, in physiological experiments (e.g. Stokes et al., 
2013), there is often an increase in mean firing rates after 
the onset of a stimulus, accompanied by the change in 
neural variability (Churchland et al., 2010). This could be 
a sign of change in dynamics, induced by enhanced external 
input. It therefore remains as a question whether this type 
of transition is allowed in recurrent neural networks. 

In this paper, we consider another often-used transfer 
function, and show that the increasing in external input 
could also facilitate the onset of chaos. 
 
2. Network Model 
 

We consider a local network, which consists of  
excitatory and  inhibitory recurrently connected neurons. 
In addition, the network receives external inputs from 
another   excitatory neurons. Following the idea of 

balanced network (Vreeswijk and Sompolinsky, 1996), we 
assume that each neuron receives  excitatory and 

  inhibitory synapses on average, from local 
recurrent connections, and further   excitatory 
synapses from a remote region. Therefore, the number of 
synapses on each neuron is large, but sparse compared to 
the total number of neurons in the network. It is known that 
in a spiking model with such assumption, the excitatory and 
inhibitory inputs to individual neurons dynamically 
balance each other (Vreeswijk and Sompolinsky, 1996), 
rendering the spikes to be determined by stochastic 
fluctuations. Here we use a rate-based model, where the 
local dynamics of the  neuron is given by 

 

where   is the activation of neuron and   is the 
corresponding firing rate. The synaptic strength  ,  , 
and  are either zero, which corresponds to non-
connected neurons, or drawn independently from certain 
distributions, with mean and standard deviation (SD)  
and  . We adopt the often-used 
transfer function  , where  
indicates the nonlinearity. We make further simplifications 
by assuming that , 

 (Amit 
and Brunel, 1997), and  . The external inputs are 
assumed to be constant over time. 
 
3. Methods and Results 
 

Two different states are found in the dynamics (Figure 1). 
When the intensity of external input is weak, a stable non-
zero fixed point exists in the firing rate space, where almost 
any initial distribution of firing rates will be attracted into 
this state. The configuration of firing rates in this state is 
determined by the specific configuration of synapses, and 
firing rates in the external input. Note that although this 
configuration is random due to the randomness in synapses 
and external input, its statistical properties are rather simple, 
and can be obtained self-consistently. When the intensity of 
the external input exceeds some critical value, however, the 

- 206 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016



   

fixed point is destabilized and the network state exhibits 
deterministic chaos, a common scenario reported in 
balanced networks. 
 

 
Figure 1. Two states in the dynamics. Top: the mean and 
distribution of firing rates in the fixed point state in a 
network with , and 

. The red curve indicates the distribution solved from 
the self-consistent equations. Bottom: the mean firing rate 
in a network with , and the logarithm 
of the power versus frequency for the chaotic state. 
 

We first derive the self-consistent equations for the fixed 

point state by setting  for each neuron. Because the 
number of synapses on each neuron is large, the 
contribution of firing rates of individual neurons is small. 
Thus the state of each neuron is approximately independent 
with each other, and the summation terms on the r.h.s. of 
(1) can be taken as Gaussian noise. In the limit of large 
networks, the dynamics of each neuron is therefore given 
as follows: 

 

where  , driven by a Gaussian term  , is also Gaussian. 
This observation allows us to describe the state simply with 
the mean  and SD  of . The probability density of the 
firing rate is therefore 

 

Under the assumption of the fixed point state,  and  
can be obtained as 

 

where  and  are the mean and SD of the firing rate, 
and the correlation between synaptic connection  and 
firing rate  vanishes again due to the large number of 
synapses. 

Substituting (5), (6) into (4) and integrating for the first 
two moments of the distribution of firing rates provides 
following self-consistent equations: 

 

In the fixed point state, the mean and SD of the firing 
rate distribution can be solved from these equations by 
numerical methods.  

However, the chaotic state is much more complicated 
than what can be described by a low-dimensional system. 
We therefore wish to understand this transition to chaos 
from below, by continuously changing a bifurcation 
parameter in the fixed point state. To this end, we solve the 
self-consistent equations (7) and (8) at certain parameter 
values, and then use a continuation method to investigate 
the changes in solutions w.r.t. the intensity of the external 
input. The result is shown in Figure 2. Solutions for either 
the mean or SD of the firing rate distribution exist for finite 

, indicating a critical value at which the transition occurs. 
 

 
Figure 2. Dependency of mean and SD of the firing rate 
on mean external input. The solid line and dashed line 
indicate stable and unstable fixed points, respectively. The 
red points are simulation results in a network with 

 , and  . The green, black and 
magenta points denote the solutions used to calculate the 
spectrum in Figure 3. Above the critical value, no fixed 
point exists in the dynamics. The outlier red point at 

  is a result due to the finite network used in the 
simulation. 
 

 The stability of fixed point state is determined by the 
Jacobian matrix of (1): 

 

where the first  columns in  correspond to synapses 
from excitatory neurons, the remaining  columns 
correspond to synapses from inhibitory neurons, and  
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arranged accordingly. The fixed point is stable when all 
eigenvalues of this matrix have negative real parts. Note 
that  is a random matrix whose non-zero entries are drawn 
from two different distributions. The spectrum of such 
matrices have been studied in Rajan et al. (2006). Here we 
simply use numerical results to show the changes in it. In 
order to do this, we first solve   and   for given 
parameter values, and then sample a sufficiently large 
matrix according to these statistics and calculate the 
eigenvalues. The results are shown in Figure 3. Due to the 
correlation in the entries, the spectrum appears as an ellipse. 
As the solution of the fixed point moves along the blue 
curve in Figure 2, both the SD of the firing rate and the 
radius of the spectrum of the Jacobian matrix increase 
gradually. The bifurcation emerges when one of the 
eigenvalues crosses the imaginary axis. After that, the 
starting fluctuations further add to the SD of the firing rate, 
resulting in avalanche which forces the system quickly into 
chaotic dynamics.  
 

 
Figure 3. Changes in the spectrum of the Jacobian 
matrix. From left to right, calculated at the green (

 ), the black (
 ) and the magenta 

(  ) points in 
Figure 2, with , and . 
 

Finally, we show that the SD of the external input has 
relatively small impact on this transition. We generate a 
network randomly with  , and  , and 
then run the simulation in this network with external inputs 
of different means and SDs. The result is shown in Figure 
4. Each square denotes the resulting variance in the state, 
with corresponding combination of  and  and random 
initial conditions. Therefore the zero variance indicates the 
fixed point state, and the transition can be found only for 
large . 
 
4. Discussion 
 

In this paper, we studied the transition from the fixed 
point state to chaos in a recurrent neural network, which is 
facilitated by an increasing external input. In the fixed point 
state, we found that the state can be characterized by two 
statistics that can be solved self-consistently. We showed 
how the transition occurs numerically, by continuously 
changing the bifurcation parameter. We also found that the 
SD of the external input seems not to largely influence the 
transition. 

These results have some interesting implications. First of 
all, since the transition is independent of the SD of the 
external input, the degree of freedom in the configuration 
of the external input could be exploited for information 

coding. For example, an enhanced external input at the 
onset of stimulus sets chaos onset, encouraging the 
trajectory in network dynamics to explore misaligned 
dimensions, which has been shown crucial in many 
cognitive tasks (e.g. Raposo et al., 2014; Kaufman et al., 
2014). Meanwhile, the information about the initial state is 
preserved through the specific configuration in the external 
input, thus the trajectory could either recover the initial 
state, or converge to some state corresponding to integrated 
information after the task. On the other hand, as indicated 
by the outlier red points in Figure 2, the transition to chaos 
is postponed in a finite network. This is due to the random 
fluctuation in the network structure, and is sometimes 
referred to as the quenched noise. This randomness implies 
that each realistic neural network may have a different 
coding scheme. 

To realize certain cognitive functions, cortical networks 
are required quite often to dynamically switch between 
different types of dynamics: a noise-resistant one for 
information holding and a perturbation-sensitive one for 
information manipulation. The transition we studied here 
might therefore provide some insight on how this could be 
achieved in a recurrent neural network. 
 

 
Figure 4. The SD of the external input has minor effect 
on the transition. The variance of the resulting state is 
shown by color.  
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