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Abstract-In this paper, a study on frequency interpolation 

algorithms of method of moments (MoM) impedance matrices is 
discussed in detail, which is successfully applied into the full-wave 
analysis of a microstrip patch antenna in a relatively wide band. 
By using Lagrange interpolation scheme in an adaptive system, 
two interpolating rules are realized and their accuracies are 
defined by Frobenius norms of the impedance matrices in entire 
frequency band. A microstrip fed patch antenna is considered to 
verify the algorithm from 1 to 5 GHz. The numerical results have 
shown that by selecting the Chebyshev zeros in the frequency 
band for polynomial interpolation is of high accuracy and the 
simulation efficiency can be highly elevated simultaneously. 
Besides, a statistical conclusion on the tradeoff between accuracy 
and efficiency issue has also been made quantitatively. 

I. INTRODUCTION 

With the fast development in microwave and millimeter 
wave integrated circuit design and VLSI technology, more and 
more attention has been paid to the rigorous, accurate and fast 
modeling and simulation methods of layered circuits. By 
applying the MoM with layered medium dyadic Green's 
functions into the mixed potential integral equation (MPIE) has 
been one of the most popular methods for microstrip structures 
[1-5]. As is well-known, the spectral-domain Green's functions 
of layered medium structures can be expressed in closed form 
[6], and then inversed to spatial domain through the 
Sommerfeld integrals (SI). Based on our recent works [7, 8], 
the Green's functions in spatial domain have been fast and 
accurately obtained by means of the combination of the 
discrete complex image method (DCIM) and the all modes 
method in near and non-near region, respectively. With the 
closed-form spatial domain dyadic Green's functions, the MoM 
have been constructed for modeling and simulation for planar 
layered circuits, which is based on the RWG basis functions [9] 
and Delta-Gap voltage excitation model [10]. Although the 
computer codes could reach almost the same efficiency as 
some commercial software at single frequency point, it 
becomes inefficient for wide-band frequency sweeping 
situation. Considering the smooth property of MoM impedance 
matrix elements, it is possible to build interpolating schemes in 
a relative wide band, therefore, the efficiency of MoM can be 
highly elevated. 

In this paper, a study on frequency interpolation algorithms 
of MoM impedance matrices is discussed in detail, which has 
been successfully applied into the full-wave analysis of a 

microstrip patch antenna in a relatively wide band. By using 
Lagrange interpolation scheme, two sampling rules are realized 
and their accuracy are defined by Frobenius norms of the 
impedance matrices in entire frequency band. A microstrip fed 
patch antenna is considered to verify the algorithms from 1 to 5 
GHz. The numerical results have shown that by selecting the 
Chebyshev zeros in the frequency band for polynomial 
interpolation is of high accuracy and the simulation efficiency 
can be highly elevated simultaneously. Very good agreement 
on S-parameters between the proposed method and commercial 
software have been found. 

II. MPIE FORMULATION AND PARAMETER EXTRACTION 

By enforcing the boundary condition that revokes the 
vanishing of the total tangential electric field on the conductor 
surface, the EFIE governing the total current density can be 
established. However, to avoid the two-dimensional infinite 
integrals with highly oscillating, slowly decaying and hyper-
singular kernel involved in the EFIE, the MPIE has been 
widely used in layered structures, which is composed of vector 
and scalar potentials with weakly singular kernels. The MPIE 
can be formulated as below [11]: 
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  stands for the impressed electric 
field, pr is the location of the port and ˆpn is the outward 
normal parallel to the feed line. ( )AG  and ( )GΦ

  refer to the 
dyadic and scalar Green's functions of the vector and scalar 
potential, respectively. With the spatial Green's functions, the 
MoM can be applied to converting the MPIE into an matrix 
equation. For the sake of modeling the arbitrarily shaped 
geometries, the RWG triangular patches are adopted in this 
paper. With the Galerkin's procedure, (1) becomes [11] 
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where nf


and mf


 stand for the RWG basis and weighting 
functions, respectively. nT  and mT  are the triangular pairs 
containing the source ( r′ ) and field ( r ) point, respectively. 
By using the Green's identity and the numerical Gaussian 
integral over triangular meshes, the integral equation (2) can be 
deduced as an algebraic linear system. As is proposed in [10], 
the delta-gap voltage model is adopted to excite the physical 
port, and the matrix element involved can be calculated as [11]: 
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For the microstrip planar circuits, the S-parameters are 
usually extracted, which depend on the incident and reflected 
wave of the dominant mode. To observe the recognizable 
standing-wave feature on the feed line, the reference planes 
should be selected away from not only the discontinuities but 
also the exciting ports. The generalized pencil-of-function 
(GPOF) is adopted in this paper. After the curve-fitting 
operation, the current distribution can be written as [11]: 
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where pi is the amplitude of the i-th mode. αi and βi stand for 
the propagation constant of the i-th mode. From the physical 
point of view, the first two terms, namely, (p1 α1 β1) and (p2 α2 
β2) are just the incident and reflected wave of the dominant 
mode. Therefore, the S11 can be easily obtained.  

III. IMPEDANCE MATRIX INTERPOLATION SCHEME 

It is a well-known fact that although most parameters of 
microstrip structures, such as S-parameters and the induced 
current distributions, varies rapidly with frequencies, however, 
the impedance matrix elements appear much smoother 
behaviors. Therefore, it enlighten us to introduce Lagrange 
polynomial interpolations to fit the impedance matrix elements. 

In this paper, two sampling rules are realized, namely, 
equally spaced sampling and sampling with Chebyshev zeros 
in the frequency band of interest, as are shown in (5) and (6), 
respectively. 
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where [ , ]l hf f  is the frequency band of interest and the number 
of sampling points is N+1. With accurate calculate the 
impedance matrix at these sampling frequencies, the rest can 
be approximated by Lagrange polynomial interpolation: 
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To estimate the relative error of the interpolation scheme, as 
well as to establish an adaptive algorithm, the Frobenius norms 
of impedance matrices are adopted [13] and the relative error 
can be expressed as: 
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where the subscripts P stand for the number of sampling points. 
Considering the imagine parts of impedance matrices are much 
larger than the real parts, it is more reasonable to calculate δ  
for real and imagine parts separately.  

IV. NUMERICAL EXAMPLES 

In this paper, a microstrip-fed patch antenna is modeled [12] 
and analyzed by the proposed method. By using the 
“PDETOOL” in Matlab, totally 353 triangular elements are 
generated, corresponding to 486 RWG pairs, as is shown in Fig. 
1. According to the definition of relative error in (9), the 
threshold should be appointed before the adaptive scheme. The 
behavior of the relative errors is shown in Fig. 2, in which both 
equally spaced sampling and sampling with Chebyshev zeros 
in the whole frequency band of interest are calculated. Fig. 3 
shows the relative errors between the interpolating impedance 
matrix and the standard matrix from direct MoM.  
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Fig.1.Planform of a patch antenna meshed by triangles 

 
Fig 2. Relative errors of impedance matrix by different interpolation schemes 

From these two figures, as the number of sampling nodes N 
increases, the relative error decreases rapidly. Also, the relative 
error of Chebyshev zeros interpolation scheme, comparing to 
that of equally spaced sampling interpolation scheme, tends to 
be more stable within the whole frequency band. Fig.4 shows 
the scattering parameter, S11, calculated by the two 



interpolation schemes and the direct MoM, where 6 sampling 
points are selected in each interpolation scheme. Very good 
agreements can be found in Fig.4. However, from the stable 
point of view, interpolation by sampling with Chebyshev zeros 
is preferred because of its steady behavior of the relative error 
in the whole frequency band. 

 
Fig. 3 Relative errors  between impedance matrix interpolated by proposed 

schemes and that by direct MoM 

 
Fig. 4 S11 parameter for different methods 

Table 1. Accuracy and Efficiency of the proposed method 

RWG: 468, [1:0.02:5] GHz || Macbook Pro @ 

2.5GHz，16G RAM 

Scheme Time Cost (s) Max Relative Error 
(Compare to Dire. MoM) 

HFSS(discrete) 3,686 ━ 
Dire. MoM 25,037 ━ 
3-Cheb. Interp. 529 11.15%  (-10dB) 
4-Cheb. Interp. 690 4.37%  (-14dB) 
5-Cheb. Interp. 836 1.67%  (-18dB) 
6-Cheb. Interp. 949 0.63%  (-22dB) 
7-Cheb. Interp. 1071 0.26%  (-26dB) 
8-Cheb. Interp. 1189 0.11%  (-30dB) 

Table. 1 shows the time consumptions for different methods 
performed on a Macbook Pro with 2.5GHz and 16G RAM.  
From this table, we can find that interpolation by sampling 
with 6 Chebyshev zeros consumes only one third and one 
twenty-fifth of time by ANSYS HFSS (discrete model) and 
direct MoM, respectively, while the relative error is only 
0.63%, which verifies the high efficiency and accuracy of the 

proposed scheme.  Besides, a good statistical property can be 
found  from the last two columns in this table, that is, as the 
sampling nodes increase by one, the time cost for calculation 
increases 132s in average, while the maximum relative error 
decreases 4dB. 

V. CONCLUSION 

 An adaptive frequency sweeping algorithm based on 
Lagrange polynomial is investigated for interpolating 
impedance matrix of MoM. Both equally spaced sampling and 
sampling with Chebyshev zeros are realized and discussed. By 
introducing the Frobenius norms, the relative error of the 
interpolation matrices are effectively evaluated. From the 
numerical example, sampling with Chebyshev zeros has the 
advantage of error control within the whole frequency band. 
This algorithm yields accurate result in scattering parameters 
as those from ANSYS HSFF and direct MoM, while enhancing 
the efficiency more than 3 and 25 times, respectively. 
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