

Speeding up of the Traffic Congestion Mitigation by Stochastic Optimization
in Deep Learning

Shinnnosuke NAKAMURA†1 Takumi UEMURA†2 Gou KOUTAKI†3 Keiichi UCHIMURA†3

†1 Graduate School of Engineering, Sojo Uniersity

†2 Faculty of the Computer Information Science, Sojo University
4-22-1 Ikeda, Nishi-ku Kumamoto city, Kumamoto Prefecture 860-0082, Japan

†3 Graduate School of Science and Technology, Kumamoto University
2-39-1 Kurokami, Chuo-ku Kumamoto city, Kumamoto Prefecture 860-8555, Japan

Email: g1511M03@m.sojo-u.ac.jp, t_uemura@cis.sojo-u.ac.jp,
koutaki@cs.kumamoto-u.ac.jp, uchimura@cs.kumamoto-u.ac.jp

 Abstract: In recent years, many researchers have
become interested in methods for mitigating traffic
congestion by optimizing traffic signal parameters. To
mitigate traffic congestion over a widespread area, a
method using an advanced genetic algorithm and a traffic
simulator has been proposed (Nishihara, T., et al., “The
Verification with Real-World Road Network on
Optimization of Traffic Signal Parameters using Multi-
Element Genetic Algorithms”, ITS World Congress,
2012). However, this method consumes considerable time
when simulating traffic flow. This paper proposes a
method that reduces the processing time of the simulator
by using a neural network.

1. Introduction

In recent years, traffic congestion has caused several
economic and environmental issues. The Ministry of
Land, Infrastructure, and Transportation (MLIT) in Japan
has estimated the economic loss caused by congestion to
be 12 trillion yen [1]. In addition, it causes a loss of 30 h
per year for each person. Moreover, it generates
environmental pollution because of the greenhouse gases
that are emitted from idling cars. Therefore, the mitigation
of traffic congestion has become significant in recent
years.

Nishihara et al. [2] addressed this problem by proposing
a method that uses both a multiple-element genetic
algorithm (ME-GA) and a traffic simulator. However, this
method is slow when simulating a road network such as
the one shown in Figure 1.

To shorten the processing time, we propose a method
that replaces the simulator with a pre-trained neural
network (NN). With this replacement, the prediction
accuracy has a large effect on mitigation performance.
Therefore, we propose a machine learning method that
uses deep learning to train the NN.

2. Previous methods

The GreenWave method is an optimization method for
traffic signals that is operated in actual service [3, 4].

GreenWave optimizes the traffic signals so as not to stop
cars in a certain road section. However, it causes traffic
congestion at the interface of this road section.

Xu et al. proposed the GreenSwirl method, which
improves on GreenWave. GreenSwirl applies GreenWave
to a loop road, and uses a path finding algorithm to allow
cars to travel through the loop road optimally. GreenSwirl
achieves better mitigation of traffic congestion than
GreenWave [5]. However, the design of the loop road and
the settings of the road signals are made manually, and
thus, this method faces several problems when applied to
widespread areas.

Nishihara et al. proposed a method that is constructed
from a genetic algorithm (GA) and an evaluation to
optimize the traffic signal parameters over a widespread
area. Figure 2 shows the processing flow in Nishihara et
al.’s method [2]. This method uses the optimization
algorithm of multidimensional parameters to optimize the
traffic signal parameters over a widespread area.
Nishihara et al. used ME-GA to optimize
multidimensional parameters in order to obtain
generations with better genes. This method comprises the
following five steps.

Figure 1 Road network modeled on the Ooe-Toroku

area in Kumamoto city (Reproduced from
[2]).

- 56 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016

Step 1: Set the actual road network and road signal
parameters in the traffic flow simulator.

Step 2: Generate the initial individuals in ME-GA. ME-
GA is initialized from the traffic congestion
evaluation values derived from the traffic flow
simulator.

Step 3: Derive better road signal parameters by
calculating new generations in ME-GA.

Step 4: Derive the traffic congestion evaluation values
of each road signal parameter from the traffic
flow simulator.

Step 5: Apply each traffic congestion evaluation value
to the ME-GA and iterate steps 3 to 5 until a
certain number of generations has been
calculated.

This method iterates the operation of the traffic flow

simulator to optimize the traffic signal parameters;
therefore, the processing time of the traffic flow simulator
significantly affects the total time of the system. Nishihara
et al.’s method consumes 19 hours to optimize the traffic
signal parameters in the simple road network shown in
Figure 1. The processing time of the traffic flow simulator
needs to be shortened in order for this method to be
operated in actual service.

3. Proposed method

3.1. Outline

In this paper, to shorten the processing time, we
propose a traffic signal optimization method that replaces
the traffic simulator with a pre-trained NN, in order to
predict with high accuracy using deep learning.

The learning methods of deep learning can be classified
into the following four types: autoencoder (AE) [6],
restricted Boltzmann machine [7, 8], convolutional NN
[9-11], and recurrent NN [12, 13]. Among them, we
choose AE because it is the most versatile and has the
same structure as that of a general NN. In addition, we use
a stack denoising AE (SDA) because it is generally
regarded as the method that obtains the best performance
for AE.

We use a stochastic optimization approach, called
Adam, to optimize the network parameters for deep
learning. In recent years, stochastic optimization has
become a major method in deep learning that accelerates
learning convergence and reduces generalization error.
Adam is regarded as learning more quickly than other
conventional parameter optimization methods such as
AdaGrad or RMSProp [14].

Figure 3 shows the process flow of the proposed
method, which comprises two processes. The first is the
learning process for predicting the output value of the
traffic flow simulator. This process samples the learning
data from the traffic flow simulator and extracts the
features for the NN from the data via unsupervised
learning using SDA. After feature extraction, the NN

predicts the output value via supervised learning using the
back propagation method. The second process optimizes
the traffic signal parameters via a trained NN and ME-
GA. ME-GA better predicts the traffic signal parameters
by using the congestion evaluation values that are
outputted from the NN. The traffic signal parameters are
optimized by iterating the optimization process.

3.2. Properties of NN

Supervised learning is performed after feature
extraction by deep learning using the back propagation
method. In this study, the training data are normalized as a
real number from [0, 1]. We use a sigmoid function for the
activation function, as shown in the following equation.

 !"#$%"&(() =

+

+,-./
 (1)

Here, Z is the output value of the element and is the
gain.

The error value E in the output layer is derived from the
mean square error, as shown in following equation.

 0 =

+

1
(23 − 53)

1
3 (2)

Here, Tk shows the average value of the training data and
Ok shows the k th sample value of the output.

Table 1 shows the Adam parameter optimization
procedure. Parameter θ is the parameter to be determined,

Figure 2 Process flow of Nishihara et al.’s method

Figure 3 Process flow of the proposed method

- 57 -

f is the objective function, # is a gradient derived from f,
and t	 is the number of iterations for learning. In addition,
the recommended parameters for Adam are shown at the
top of Table 1.

4. Experiment

We carried out two experiments to confirm the
effectiveness of the proposed method. Experiment 1
compares the congestion mitigation performances of the
proposed method, Nishihara et al.’s method, and the actual
measured traffic signal parameters. Experiment 2
evaluates the calculation speed of the proposed method
and Nishihara et al.’s method.

4.1. Experimental setup

Table 2 shows the specifications of the computer used
for each method.

4.1.1. Properties of the traffic flow simulator

The traffic flow simulator used in the evaluation is
Aimsun 6.1. The road network in these experiments is the
same as that used to evaluate Nishihara et al.’s method
(shown in Figure 1) [2]. In addition, the traffic volume
and agent of each vehicle in Aimsun 6.1 are set the same
as those for Nishihara et al.’s method.

The traffic signal parameters consist of Cycle, Split,
and Offset signals. These are set for each intersection.

Aimsun 6.1 outputs WaitOut, Inside, and GoneOut data.
WaitOut is the number of vehicles that cannot enter the
road network because of traffic jams and are located
outside of the road network to be optimized. Further,
Inside is the number of vehicles in the road network to be
optimized. Finally, GoneOut is the number of vehicles that
have left the road network to be optimized.

4.1.2. Properties of the NN

In the deep learning for these experiments, the NN pre-
learns using SDA before it is trained using error back
propagation. The NN does not include an output layer
because of the unsupervised learning in pre-learning.

We construct an NN for every congestion evaluation
value because the congestion evaluation values do not
affect each other.

Mini-batch learning is used as the learning method. To
consider versatility, each number of iterations for learning
is set to minimize the differences between generalization
and training errors in the learning process.

4.1.3. Properties of ME-GA

The ME-GA parameters are set such that the number of
generations is 500 and the population is 300. The other
settings are the same as those in Nishihara et al.’s method.
(The number of generations and population of Nishihara

et al.’s method are 100 and 75, respectively). The
evaluation value F for ME-GA is derived from the
following two equations.

: = ;<=
>?@

A
+ ;<=

>CD

AC
+ ;<=

A

AE
 (3)

F =
GEHIJK

LLM
 (4)

Here, NOP is WaitOut and NQR is Inside. Further, ST-UVW

(DelayTime) is the average difference between the actual
running time and the ideal running time; the total travel
distance (TTD) indicates the sum of the travel distance of
all vehicles in the simulation; and Cw, Ci, and Cd are
weights for the congestion evaluation value, where Cw =
100, Ci = 500, and Cd = 500.

4.2. Experimental results

Table 4 shows the results of the first experiment. Here,
low values for WaitOut and Inside indicate that the traffic
situation is good. A large value for GoneOut also indicates
that the traffic situation is good.

The results of this experiment confirm that the traffic
congestion resulting from Nishihara et al.’s method and
the proposed method are equal. The results also show that
the proposed method performs worse than Nishihara et
al.’s method when the number of generations and
population are set to be the same as those in Nishihara et
al.’s method. Therefore, the method for predicting the
output values of the traffic flow simulator would probably
be improved by reconsidering the samples used for pre-
training.

Table 5 shows the results of Experiment 2. The
processing time in the proposed method is about 15
minutes, while that in Nishihara et al.’s method is about
19 hours. Therefore our proposed method achieves a
processing time that is 99% shorter than that in
Nishihara’s method.

Table 1 Algorithm of Adam
Adam α = 0.001 	1 = 0.9 	2 = 0.999 ε = 10-

8 	1
t and 	2

t are tth powers of 	1 and 	2,
respectively.
$X ← 0	
[X ← 0	
S ← 0	
\ℎ"^;	learn	number		&%	

S ← S + 1	
 #G ← ∇ijG(kGl+)	

$G ← β+ $Gl+ + (1 − n+) #G	

[G ← n1 [Gl+ + (1 − n1) #G
1	

$oG ← $G	/	(1 − n+
G)	

[qG ← [G	/	(1 − n1
G)	

kG ← kGl+ − r $oG/(s[qG + t)
end while

- 58 -

5. Conclusion

In this study, to shorten the processing time while
maintaining accuracy, we proposed a traffic signal
parameter optimization method that uses a pre-trained
NN instead of a traffic flow simulator.

 The experimental results show that we achieved a
similar level of mitigation for traffic congestion and a
99% shorter processing time than Nishihara et al.’s
method. However, our method performed worse than
theirs when the numbers of generations and individuals
were set to the same values as in their method. In addition,
the proposed method could optimize the traffic signal
parameters in 15 min. However, VICS updates
information every 5 min generally [15]. Therefore, the
processing time of the system should be shortened to less
than 5 min in order to be practical for actual service.

In future work, we plan to apply parallel processing to
the calculation of individual evaluations in ME-GA or
increase the sampling data in deep learning.

References

[1] Ministry of the Land, Infrastructure and Trans-

portation in Japan, “Performance Management of
Road Administration in Japan”,
http://www.mlit.go.jp/road/ir/ir-perform/h18/07.pdf

[2] Nishihara, T., Wijaya, I.G.P.S., Matsumoto, S.,
Koutaki, G., Uchimura, K., Sugitani H., and Ishigaki,

S., “The Verification with Real-World Road Network
on Optimization of Traffic Signal Parameters using
Multi-Element Genetic Algorithms”, ITS World
Congress 2012, AP-00144, 2012.

[3] Warberg, A., Larsen, J., and Jrgensen, R. “Green
Wave Trrafic Optimization”, A Survey, Informatics
and Mathematical Modeling, 2008.

[4] Saki, M. and Nagatani, T., “Transition and Saturation
of Traffic Flow Controlled by Traffic Lights, Physica
A”, Statistical Mechanics and Its Applications,
Vol.325, Issue 3-4, pp.531-546, 2003.

[5] Jiaxing X., Akira K., Naoki S., and Minoru I.,
“GreenSwirl: A Combination Method of Traffic
Signal Control and Route Guidance for Reducing
Traffic Congestion”, Journal of Information
Processing, Vol.57, No. 1, pp.66-78, 2016.

[6] Vincent, P., Larochelle, H., Lajoie, L., Bengio, Y.,
and Manzagol, P.-A., “Stacked Denoising Autoen-
coders: Learning Useful Representations in a Deep
Network with a Local Denoising Criterion”, Journal
of Machine Learning Research, Vol. 11, pp. 3371-
3408, 2010.

[7] Hinton, G. E., “A Practical Guide to Training
Restricted Boltzmann Machines”, Technical Report,
2010.

[8] Hinton, G. E., “Training Products of Experts by
Minimizing Contrastive Divergence”, Neural
Computation, Vol. 14, No. 8, pp. 1771-1800, 2002.

[9] Hubel, D. H. and Wiesel, T. N., “Receptive Fields,
Binocular Interactions, and Functional Architecture
in the Cat’s Visual Cortex”, Journal of Physiology,
Vol. 160, pp. 106-154, 1962.

[10] Fukushima, K. and Miyake, S., “Neocognitron: A
New Algorithm for Pattern Recognition Tolerant of
Deformations and Shifts in Position”, Pattern
Recognition, Vol. 12, pp. 455-469, 1982.

[11] Lecun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D.,
“Backpropagation Applied to handwritten Zip Code
Recognition”, Neural Computation, Vol. 1, No. 4, pp.
541-551, 1989.

[12] Mkoloc, T., Karafiat, M., Cernocky, J., and
Khudanpur, S., “Recurrent Neural Network Base
Language Model”, In Proc, Interspeech, 2010.

[13] Murphy, K. P. Machine Learning. “A Probabilistic
Perspective”, MIT Press, 2012.

[14] Diederik, P. K. and Jimmy, L. B., “Adam: A Method
for Stochastic Optimization”, Proceedings of
International Conference on Learning
Representations 2015, arXiv:1412.6980v8, 2015.

[15] Vehicle Information and Communication System
Center, “VICS”, http://www.vics.or.jp/index1.html.

Table 3 Iteration times needed to derive each evaluation
in machine learning

Evaluation Iteration time†
WaitOut 26
Inside 20
TTD 60

DelayTime 20
 This is the iteration times with mini-batch learning

Table 4 Evaluation values for each method

Method WaitOut Inside GoneOut
Nishihara et al.’s 324 1003 4111

Proposed 326 960 4293

Actual measured 859 1122 3569

Table 5 Processing times for each method
Method Processing time

Nishihara et al.’s 19 hour

Proposed 15 minutes

Table 2 Computer specifications for each method
Method CPU Memory OS

Nishihara et al.’s Intel i7 870 2.93 GHz 8 GB Windows 7 Professional 64 bit
Proposed Intel i5 4690K 3.9 GHz 8 GB Ubuntu 15.04 64 bit

- 59 -

