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 Abstract:   In recent years, many researchers have 
become interested in methods for mitigating traffic 
congestion by optimizing traffic signal parameters. To 
mitigate traffic congestion over a widespread area, a 
method using an advanced genetic algorithm and a traffic 
simulator has been proposed (Nishihara, T., et al., “The 
Verification with Real-World Road Network on 
Optimization of Traffic Signal Parameters using Multi-
Element Genetic Algorithms”, ITS World Congress, 
2012). However, this method consumes considerable time 
when simulating traffic flow. This paper proposes a 
method that reduces the processing time of the simulator 
by using a neural network. 
 
1.  Introduction 
 

In recent years, traffic congestion has caused several 
economic and environmental issues. The Ministry of 
Land, Infrastructure, and Transportation (MLIT) in Japan 
has estimated the economic loss caused by congestion to 
be 12 trillion yen [1]. In addition, it causes a loss of 30 h 
per year for each person. Moreover, it generates 
environmental pollution because of the greenhouse gases 
that are emitted from idling cars. Therefore, the mitigation 
of traffic congestion has become significant in recent 
years. 

Nishihara et al. [2] addressed this problem by proposing 
a method that uses both a multiple-element genetic 
algorithm (ME-GA) and a traffic simulator. However, this 
method is slow when simulating a road network such as 
the one shown in Figure 1.  

To shorten the processing time, we propose a method 
that replaces the simulator with a pre-trained neural 
network (NN). With this replacement, the prediction 
accuracy has a large effect on mitigation performance. 
Therefore, we propose a machine learning method that 
uses deep learning to train the NN. 
 
2. Previous methods 
 

The GreenWave method is an optimization method for 
traffic signals that is operated in actual service [3, 4]. 

GreenWave optimizes the traffic signals so as not to stop 
cars in a certain road section. However, it causes traffic 
congestion at the interface of this road section. 

Xu et al. proposed the GreenSwirl method, which 
improves on GreenWave. GreenSwirl applies GreenWave 
to a loop road, and uses a path finding algorithm to allow 
cars to travel through the loop road optimally. GreenSwirl 
achieves better mitigation of traffic congestion than 
GreenWave [5]. However, the design of the loop road and 
the settings of the road signals are made manually, and 
thus, this method faces several problems when applied to 
widespread areas.  

Nishihara et al. proposed a method that is constructed 
from a genetic algorithm (GA) and an evaluation to 
optimize the traffic signal parameters over a widespread 
area. Figure 2 shows the processing flow in Nishihara et 
al.’s method [2]. This method uses the optimization 
algorithm of multidimensional parameters to optimize the 
traffic signal parameters over a widespread area. 
Nishihara et al. used ME-GA to optimize 
multidimensional parameters in order to obtain 
generations with better genes. This method comprises the 
following five steps. 

 

 
Figure 1  Road network modeled on the Ooe-Toroku 

area in Kumamoto city (Reproduced from 
[2]). 
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Step 1: Set the actual road network and road signal 
parameters in the traffic flow simulator. 

Step 2: Generate the initial individuals in ME-GA. ME-
GA is initialized from the traffic congestion 
evaluation values derived from the traffic flow 
simulator. 

Step 3: Derive better road signal parameters by 
calculating new generations in ME-GA. 

Step 4: Derive the traffic congestion evaluation values 
of each road signal parameter from the traffic 
flow simulator. 

Step 5: Apply each traffic congestion evaluation value 
to the ME-GA and iterate steps 3 to 5 until a 
certain number of generations has been 
calculated. 

 
This method iterates the operation of the traffic flow 

simulator to optimize the traffic signal parameters; 
therefore, the processing time of the traffic flow simulator 
significantly affects the total time of the system. Nishihara 
et al.’s method consumes 19 hours to optimize the traffic 
signal parameters in the simple road network shown in 
Figure 1. The processing time of the traffic flow simulator 
needs to be shortened in order for this method to be 
operated in actual service.  
 
3. Proposed method 
 
3.1. Outline 
 

In this paper, to shorten the processing time, we 
propose a traffic signal optimization method that replaces 
the traffic simulator with a pre-trained NN, in order to 
predict with high accuracy using deep learning. 

The learning methods of deep learning can be classified 
into the following four types: autoencoder (AE) [6], 
restricted Boltzmann machine [7, 8], convolutional NN 
[9-11], and recurrent NN [12, 13]. Among them, we 
choose AE because it is the most versatile and has the 
same structure as that of a general NN. In addition, we use 
a stack denoising AE (SDA) because it is generally 
regarded as the method that obtains the best performance 
for AE.  

We use a stochastic optimization approach, called 
Adam, to optimize the network parameters for deep 
learning. In recent years, stochastic optimization has 
become a major method in deep learning that accelerates 
learning convergence and reduces generalization error. 
Adam is regarded as learning more quickly than other 
conventional parameter optimization methods such as 
AdaGrad or RMSProp [14]. 

Figure 3 shows the process flow of the proposed 
method, which comprises two processes. The first is the 
learning process for predicting the output value of the 
traffic flow simulator. This process samples the learning 
data from the traffic flow simulator and extracts the 
features for the NN from the data via unsupervised 
learning using SDA. After feature extraction, the NN 

predicts the output value via supervised learning using the 
back propagation method. The second process optimizes 
the traffic signal parameters via a trained NN and ME-
GA. ME-GA better predicts the traffic signal parameters 
by using the congestion evaluation values that are 
outputted from the NN. The traffic signal parameters are 
optimized by iterating the optimization process. 
 
3.2. Properties of NN  

Supervised learning is performed after feature 
extraction by deep learning using the back propagation 
method. In this study, the training data are normalized as a 
real number from [0, 1]. We use a sigmoid function for the 
activation function, as shown in the following equation.  
 
 !"#$%"&(() =

+

+,-./
 (1) 

 
Here, Z is the output value of the element and  is the 
gain. 

The error value E in the output layer is derived from the 
mean square error, as shown in following equation. 
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Here, Tk shows the average value of the training data and 
Ok shows the k th sample value of the output. 

Table 1 shows the Adam parameter optimization 
procedure. Parameter θ is the parameter to be determined, 

 
Figure 2  Process flow of Nishihara et al.’s method 

Figure 3  Process flow of the proposed method 
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f is the objective function, # is a gradient derived from f, 
and t	 is the number of iterations for learning. In addition, 
the recommended parameters for Adam are shown at the 
top of  Table 1.  

 
4. Experiment 
 

We carried out two experiments to confirm the 
effectiveness of the proposed method. Experiment 1 
compares the congestion mitigation performances of the 
proposed method, Nishihara et al.’s method, and the actual 
measured traffic signal parameters. Experiment 2 
evaluates the calculation speed of the proposed method 
and Nishihara et al.’s method. 

 
4.1. Experimental setup  
 

Table 2 shows the specifications of the computer used 
for each method. 
 
4.1.1. Properties of the traffic flow simulator  
 

The traffic flow simulator used in the evaluation is 
Aimsun 6.1. The road network in these experiments is the 
same as that used to evaluate Nishihara et al.’s method 
(shown in Figure 1) [2]. In addition, the traffic volume 
and agent of each vehicle in Aimsun 6.1 are set the same 
as those for Nishihara et al.’s method. 

The traffic signal parameters consist of Cycle, Split, 
and Offset signals. These are set for each intersection.  

Aimsun 6.1 outputs WaitOut, Inside, and GoneOut data. 
WaitOut is the number of vehicles that cannot enter the 
road network because of traffic jams and are located 
outside of the road network to be optimized. Further, 
Inside is the number of vehicles in the road network to be 
optimized. Finally, GoneOut is the number of vehicles that 
have left the road network to be optimized. 
 
4.1.2. Properties of the NN 
 

In the deep learning for these experiments, the NN pre-
learns using SDA before it is trained using error back 
propagation. The NN does not include an output layer 
because of the unsupervised learning in pre-learning. 

We construct an NN for every congestion evaluation 
value because the congestion evaluation values do not 
affect each other. 

Mini-batch learning is used as the learning method. To 
consider versatility, each number of iterations for learning 
is set to minimize the differences between generalization 
and training errors in the learning process. 
 
4.1.3. Properties of ME-GA 
 

The ME-GA parameters are set such that the number of 
generations is 500 and the population is 300. The other 
settings are the same as those in Nishihara et al.’s method. 
(The number of generations and population of Nishihara 

et al.’s method are 100 and 75, respectively). The 
evaluation value F for ME-GA is derived from the 
following two equations. 
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Here, NOP  is WaitOut and NQR  is Inside. Further, ST-UVW 

(DelayTime) is the average difference between the actual 
running time and the ideal running time; the total travel 
distance (TTD) indicates the sum of the travel distance of 
all vehicles in the simulation; and Cw, Ci, and Cd  are 
weights for the congestion evaluation value, where Cw = 
100, Ci = 500, and Cd = 500.  
 
4.2. Experimental results 
 

Table 4 shows the results of the first experiment. Here, 
low values for WaitOut and Inside indicate that the traffic 
situation is good. A large value for GoneOut also indicates 
that the traffic situation is good. 

The results of this experiment confirm that the traffic 
congestion resulting from Nishihara et al.’s method and 
the proposed method are equal. The results also show that 
the proposed method performs worse than Nishihara et 
al.’s method when the number of generations and 
population are set to be the same as those in Nishihara et 
al.’s method. Therefore, the method for predicting the 
output values of the traffic flow simulator would probably 
be improved by reconsidering the samples used for pre-
training. 

Table 5 shows the results of Experiment 2. The 
processing time in the proposed method is about 15 
minutes, while that in Nishihara et al.’s method is about 
19 hours. Therefore our proposed method achieves a 
processing time that is 99% shorter than that in 
Nishihara’s method. 

Table 1 Algorithm of Adam  
Adam α = 0.001 	1 = 0.9 	2 = 0.999 ε = 10-

8 	1
t and 	2

t are tth powers of 	1 and 	2, 
respectively. 
$X ← 0	
[X ← 0	
S ← 0	
\ℎ"^;	learn	number		&%	

S ← S + 1	
  #G ← ∇ijG(kGl+)	

$G ← β+ $Gl+ + (1 − n+) #G	

[G ← n1 [Gl+ + (1 − n1) #G
1	

$oG ← $G	/	(1 − n+
G)	

[qG ← [G	/	(1 − n1
G)	

kG ← kGl+ − r $oG/(s[qG + t) 
end while 
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5. Conclusion 
 

In this study, to shorten the processing time while 
maintaining accuracy, we proposed a traffic signal 
parameter  optimization method that uses a pre-trained 
NN instead of a traffic flow simulator. 

 The experimental results show that we achieved a 
similar level of mitigation for traffic congestion and a 
99% shorter processing time than Nishihara et al.’s 
method. However, our method performed worse than 
theirs when the numbers of generations and individuals 
were set to the same values as in their method. In addition, 
the proposed method could optimize the traffic signal 
parameters in 15 min. However, VICS updates 
information every 5 min generally [15]. Therefore, the 
processing time of the system should be shortened to less 
than 5 min in order to be practical for actual service. 

In future work, we plan to apply parallel processing to 
the calculation of individual evaluations in ME-GA or 
increase the sampling data in deep learning.   
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Table 3 Iteration times needed to derive each evaluation 
in machine learning 

Evaluation Iteration time† 
WaitOut 26 
Inside 20 
TTD 60 

DelayTime 20 
 This is the iteration times with mini-batch learning 

 
Table 4 Evaluation values for each method 

Method WaitOut Inside GoneOut 
Nishihara et al.’s 324 1003 4111 

Proposed 326 960 4293 

Actual measured 859 1122 3569 
 

Table 5 Processing times for each method 
Method Processing time 

Nishihara et al.’s 19 hour 

Proposed 15 minutes 
 

Table 2 Computer specifications for each method 
Method CPU Memory OS 

Nishihara et al.’s Intel i7 870 2.93 GHz 8 GB Windows 7 Professional 64 bit 
Proposed Intel i5 4690K 3.9 GHz 8 GB Ubuntu 15.04 64 bit 

 

- 59 -


