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Abstract—One of the most important issues in engi-
neering and science is to develop algorithms for finding
good approximate solutions of NP-hard combinatorial op-
timization problems. In this paper, we proposed a new al-
gorithm for solving Quadratic Assignment Problem (QAP)
by chaotic neural dynamics. The proposed algorithm intro-
duced a modified assignment of the neuron, which means
that while the conventional method assigns neurons to the
pair of facility and location, the proposed method assigns
neurons to the location. In addition, we changed the effect
of an external input: even if an exchange is bad, we applied
a strong input to the chaotic neural dynamics. This effect
enables a wide range search. As a result, our algorithm can
find good solutions even though the number of neurons are
reduced.

1. Introduction

In our daily life, many optimization problems exist,
for example, scheduling, vehicle routing, facility location
problem and so on. It is important to obtain possibly op-
timal solutions of these problems, because the cost can be
reduced. However, it is very hard to obtain optimal solu-
tions of such problems, because these problems are often
classified into nondeterministic polynomial time solvable
(NP)-hard problems. Therefore, we need to develop ap-
proximate algorithms to obtain near optimal solutions of
these problems in a reasonable time frame.

On the other hand, several approximate algorithms are
proposed for solving these NP-hard problems. One of the
well known methods to solve these problems is a heuristic
method, for example the 2-exchange method of Quadratic
Assignment Problem (QAP). However, the heuristic meth-
ods such as the 2-exchange method are generally trapped
into local minima. Due to this reason, many methods to
escape from the local minima have also been proposed:
for example, a tabu search[2, 3], a genetic algorithm[4],
chaotic neural dynamics[5, 6] and so on. In this paper,
we improve the method of using chaotic neural dynam-
ics that we have already proposed in Ref.[7]. The method
that we have proposed controls the 2-exchange method by
using the chaotic neural dynamics. Compared with the
method in Ref.[6], our proposed method reduced the num-
ber of neurons. In addition, to improve the performance
of the method, we introduced a new strategy. Namely, we
changed the effect of an external input: even if an exchange

is bad, we applied a strong input to chaotic neural dynam-
ics. This is the different point from the chaotic search
which we have proposed in Ref.[7]. Due to this effect, bad
exchanges are frequently executed, which means that the
state can escape from undesirable local minima. We show
that our proposed method enables a wide range search so
that it succeeded to improve the performance.

2. QAP

The QAP is one of the most difficult NP-hard combina-
torial optimization problems. The QAP is formulated as
follows: when two n × n matrices, a distance matrix D and
a flow matrix R, are given, we are asked to find an assign-
ment p = {p(1), p(2), · · · , p(n)} that minimizes an objective
function. The objective function of QAP is then defined by
Eq.(1):

F(p) =
n∑

i=1

n∑
j=1

Di jRp(i)p( j), (1)

where p(i) is the element i of the permutation p. If p(i) = j,
the element i is assigned to the location j. In the following,
we introduced a 2-exchange method which is a basic algo-
rithm for solving QAPs.

Step1：A random solution (assignment) q is made.

Step2： The objective function F(q) is calculated.

Step3： From all the elements, two elements s1 and s2 are
chosen. Then, locations assigned to s1 and s2 are
changed. Let us describe a provided solution as q′.

Step4： The objective function F(q′) is calculated.

Step5： If a solution is improved, or F(q) > F(q′), then
let q = q′. Return to Step3．When a solution was not
improved, even if any two elements s1 and s2 were
chosen, we stop a solution search.

Generally, the 2-exchange method is trapped into unde-
sirable local minima. In this paper, we used a chaotic neural
dynamics to escape from the local minima.
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3. Proposed method

To control the 2-exchange method by the chaotic neural
dynamics[8], we used Eqs.(2) ∼ (5).

ξ j(t + 1) = β∆i j(t), (2)

η j(t + 1) = w
n∑

l=1,(l, j)

xl(t) + w, (3)

ζ j(t + 1) = kζ j(t) − αx j(t) + (1 − k)θ, (4)

x j(t + 1) = f
{
ξ j(t + 1) + η j(t + 1) + ζ j(t + 1)

}
, (5)

where ξ j(t) is an external input to the chaotic neuron j,
η j(t) is a feedback input to the chaotic neuron j from other
neurons in the network, ζ j(t) is a refractoriness term of
the chaotic neuron j, and ∆i j(t) is a gain of the objective
function when we change p( j) to p(i) by the 2-exchange
method, k is a decay constant, w is a connection weight of
chaotic neurons, α is a scaling parameter of refractoriness
effect, θ is a threshold of the chaotic neuron, x j(t) is the
output of the chaotic neuron j at time t and f is a sigmoidal
function defined by f (y) = 1/(1 + e−y/ϵ).

In the method in Ref.[6], when the problem size is n,
the n × n chaotic neurons are prepared to represent an as-
signment of i and j. Namely, if the chaotic neuron (i, j)
fires, the element i is assigned to the location j. Although
this method[6] shows good performance, this method uses
many neurons. On the other hand, in this study, we use n
chaotic neurons for solving the problem of size n. For this
reason, we can reduce the number of neurons. If the chaotic
neuron i fires, we perform the 2-exchange method for the
element i. We explain our algorithm as follows.

Step1： Let i = 1.

Step2： Internal state values of all chaotic neurons except
the chaotic neuron i are updated asynchronously by
Eqs.(2) ∼ (4).

Step3： The output of all the chaotic neurons except for
the chaotic neuron i are calculated by Eq.(5).

Step4： If ∆i j(t) < 0, the elements p(i) and p( j) are ex-
changed by the 2-exchange method and go to Step6.
Otherwise go to Step5.

Step5： If max
j
{x j(t + 1)} > 1/2, the chaotic neuron j fires

and the element p(i) and p( j) are really exchanged by
the 2-exchange method.

Step6： If i = n, this iteration is finished. Otherwise let
i = i + 1 and return to Step2.

There are two different points from Ref.[7]. First we
changed the input term. If we have a bad exchange, we
applied a strong input to the dynamics. Namely, in Ref.[7],
∆i j(t) is defined as ∆i j(t) = D0(t)−Di j(t), where D0(t) is the
present value of the objective function at time t, and Di j(t)
is the value of the objective function that is made by the
exchange of p(i) and p( j). On the other hand, in this paper,
we defined ∆i j(t) as ∆i j(t) = Di j(t) − D0(t). Second, we
added Step4 to introduce the steepest descent dynamics.
Without Step4, only bad exchange is adopted. Then, we
cannot get good solutions such as local minima. Therefore,
we added Step4.

Table 1: Results of gaps[%] for (i) the chaotic search(CS) with n2 neurons in Ref.[6], (ii) the chaotic search (CS) with n
neurons in Ref.[7] and (iii) the proposed method. The best parameter β for each problem is shown in parenthesis.

Problem (i) CS with n2neurons[6] (ii) CS with n neurons[7] (iii) Proposed method
gap gap gap variance

Bur26a 0.159 0.293 0.122 (0.12) 0.000983
Bur26b 0.0814 0.111 0.145 (0.40) 0.00469
Bur26c 0.0496 0.130 0.0106 (0.13) 0.000118
Bur26d 0.0234 0.080 0.00662 (0.13) 0.000028

Ste36a 5.65 3.86 4.02 (0.06) 1.04
Ste36b 12.7 8.29 4.14 (0.08) 6.80
Ste36c 4.40 3.68 2.21 (0.06) 2.02

Tai20b 1.80 3.14 0.88 (0.04) 0.21
Tai30b 2.33 1.91 0.79 (0.06) 0.16
Tai40b 3.70 4.58 0.99 (0.02) 0.99
Tai50b 2.21 3.96 0.74 (0.02) 0.089
Tai60b 2.52 2.48 0.58 (0.02) 0.47
Tai80b 2.88 2.08 1.03 (0.02) 0.18

- 53 -



4. Result

We evaluated the performance of the proposed algorithm
using benchmark problems from QAPLIB[1]. To evaluate
the performance, we used the gap which is defined by the
following Eq.(6).

gap[%] =
found best solution − optimal solution

optimal solution
× 100. (6)

In this study, we used the following parameter values:
w = 0.0005, k = 0.5

1
n , α = 1, θ = 0.05 and ϵ = 0.002.

We calculated 100 trials for each parameter β, and calcu-
lated the average gaps across trials. In the numerical exper-
iments, ∆i j(t) is normalized by dMrM where dM = max

i j
{di j}

and rM = max
i j
{ri j}. di j and ri j are elements of distance

matrix D and flow matrix F.
Table 1 shows the obtained best gaps for various param-

eter values of β. Numerals with bold faced types indicate
the best gap, and italic faced types indicate the second best
gap. The best parameter β for each problem is shown in
parentheses. The third row of Table 1 shows the results
with the chaotic search(CS) with n neurons in Ref.[7]. The
fifth row of Table 1 shows variances of 100 trials for the
best β. From Table 1, even though our method controls the
2-exchange method with small number of neurons, we can
get better performance compared to the method with CS
with n2 neurons in Ref.[6] and the method with CS with n
neurons in Ref.[7].

To compare the performance of the method, we changed
the value of β and evaluated the performance. Figure 1
shows the result of the average gap for each β. In Fig.1, the
ordinates show the gap and the abscissas show the values
of the parameter β. The results of the method in Ref.[6] is
shown by green lines, the method in Ref.[7] is shown by
blue lines and the proposed method is shown by red lines.
These figures show that the proposed method can get better
performance than the methods in Refs.[6, 7]. In particular,
in Bur26a and Tai60b, our proposed method can get better
performance than that of the methods in Refs.[6, 7] for a
wide range of β. In Fig.1 shows the average performance.
Next, we investigate the variance of the performance.

To investigate the variance of the obtained gaps, we show
the best gap of one trial in Fig.2. In Fig.2, ordinates show
the gap and abscissas show the number of execution times
of the 2-exchange method. The result of the method in
Ref.[6] is shown by green lines, the method in Ref.[7] is
shown by blue lines and the proposed method is shown by
red points. These figures show that almost all the red points
exist below the green and blue lines. This means that if we
select a suitable parameter β, we can get better performance
than that of the method in Refs.[6, 7] with high probability.
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Figure 1: Results of the average gaps for each β.
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Figure 2: Results of each gap for the best β. The chaotic
search(CS) with n2 neurons in Ref.[6] is shown in green
lines, the chaotic search (CS) with n neurons in Ref.[7] is
shown in blue lines and the proposed method is shown in
red points.

5. Conclusion

In this paper, we proposed a new algorithm for solving
Quadratic Assignment Problem (QAP) by chaotic neural
dynamics. Concretely, we changed the effect of external
input: the worse the exchange is, the stronger the input
is applied. This effect enables a wide range search. By
comparing with the performance of the method of chaotic
search with n2 neurons in Ref.[6] and the chaotic search
with n neurons in Ref.[7], our method can get better perfor-
mance. However, the performance of the proposed method
largely depends on value of the parameter β. Therefore it
is an important future work to construct a parameter tuning
method.
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