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Abstract—Particle swarm optimization (PSO) is a
stochastic population-based algorithm that is designed for
real-parameter optimization problems. PSO is a simple and
powerful algorithm. However, the performance of PSO is
degraded in the case of non-separable problems. In this
article, we discuss rotationally invariant PSOs and its per-
formance.

1. Intriduction

Optimization problem is an important issue in various
fields. Single-objective continuous optimization problem
is a problem of finding a real-valued vector that minimizes
an objective function f : Rn → R. In particular, an op-
timization problem that the analytic form is not known is
called as black-box optimization problem. Many stochastic
population-based algorithms have been proposed to solve
the black-box optimization problem.

Particle swarm optimization (PSO)[1][2] is one of the
stochastic population-based algorithms that is based on
swarm intelligence. PSO is simple and powerful algo-
rithm. However, its search performance is depended on
the coordinate system of the objective function [3][4][5].
Such property is referred to as rotation variance, and this
property is related to separability of the objective function
[4]. In the black-box optimization problem, the algorithm
whose search performance is affected by the property of the
objective function is undesirable. To overcome this prob-
lem, several rotationally invariant PSO have been proposed
[6][7][8][9][10][11]. In this article, we discuss the rotation
variance of PSO and we introduce the typical rotationally
invariant PSO.

Separability: If the function can be rewritten as f (x) =∑n
i=1 fi(xi), the function f is said to be separable [4].

Namely, the function f is corresponds to each dimension
is independent.

In general, if the number of dimensions increases lin-
early, the volume of the search space increases exponen-
tially. However, since the separable function can be rewrit-
ten as the sum of the 1-dimensional functions, the com-
plexity of the problem increases linearly. Thus, the sep-
arable functions is said to be an easier problem than the
non-separable function.

In almost cases, a separable function can be transformed
into the non-separable function by rotation of the coordi-
nate system. From this fact, the performance of the algo-

rithm is depended on the separability of the objective func-
tion is referred to as rotation variance.

2. Particle Swarm Optimization

PSO has been proposed by Kenedy and Clerc [1][2].
Each particle contains theree vectors: the position xt

i, the
velocity vt

i and the personal best position pt
i, where i de-

notes the number of particles and t denotes the iterations.
The particle swarm has global best position gt, it is the best
of personal best position. In each iteration, the position and
the velocity are updated by the following equations.

vt+1
i = ωvt

i + ϕ1R1(pt
i − xt

i) + ϕ2R2(gt − x) (1)
xt+1

i = xt + vt+1 (2)

where ω denotes an inertia weight coefficient and ϕ1, ϕ2
are acceleration coefficients. R1 and R2 are randomly gen-
erated diagonal matrices. Each element of these matrices is
a uniform random number in interval [0, 1].

Rotation variance of PSO: The reason of the rotation
variance of PSO is the search direction biase [3]. Figure
1 shows the histogram of the search direction and the tra-
jectory of particles on 2-dimensional sphere function. The
angle of the velocity vector means the search direction.
Sphere function is isotropic. However, the search direction
is biased in parallel to the coordinate axes.

In order to clarify the reason generating the bias of the
search direction, we consider the simple velocity update
rule that the reference position is one and without the in-
ertia weight coefficient, as vt+1

i = ϕR(bt
i − xt

i). Figure 2
shows the histogram of the 2-dimensional velocity vector
when the angle of the reference position is fixed. Since the
sign is not reversed. the distribution of the angle of the ve-
locity vector is biased when the reference position vector is
close to the coordinate axis.

3. Rotationally invariant PSOs

Several rotationally invariant PSOs have been proposed.
In this section, we introduce the typical rotationally invari-
ant PSOs.

Linear PSO (LPSO) is the most simple rotationally in-
variant PSO [6][7]. The velocity update rule of LPSO is
described by the following equation,

vt+1
i = ωvt

i + ϕ1r1(pt
i − xt

i) + ϕ2r2(gt − x), (3)
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(a) The histogram of angle of veloc-
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(b) The trajectory of particles

Figure 1: The search direction and the trajectory of parti-
cles on 2-dimensional sphere function
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(b) θ = 10◦

Figure 2: PSO: the histogram of the 2-dimensional velocity
vector when the angle to the reference position θ is fixed.

whre r1 and r2 are uniform random numbers in the interval
[0, 1]. In LPSO, the search direction is always pointed to
the reference position. Since the random number is a scalar,
the diversity of LPSO is poor.

Rotation PSO (RPSO) was proposed by Wilke et al
[6][7]. In RPSO, a rotation matrix is multiplied to the ve-
locity vector.

vt+1
i = ωvt

i + ϕ1 M1(pt
i − xt

i) + ϕ2 M2(gt − x) (4)

M = I +
απ

180

(
E − E⊤

)
(5)

where M is a random rotation matrix with the rotation an-
gle α, and E is randomly generated matrix whose elements
are uniform random numbers in the interval [−0.5, 0.5].
The dynamics of RPSO is closest to the dynamics of PSO.
However, the calculation amount of the generating of the
random rotation matrix is O(n2). Also, the calculation
amount of the product of the velocity vetor and the rota-
tion matrix is O(n2).

We consider the simple velocity update rule of RPSO as
vt+1

i = ϕM(bt
i − xt

i). Figure 3 shows the histogram of the 2-
dimensional velocity vector when the angle to the reference
position is fixed. In RPSO, the biased histogram of the
angle of the velocity vector is not obserbed.

Bonyadi et al. proposed rotationally invariant PSO us-
ing the exact rotation matrix [8]. In this article, we call
this method as Modified Rotation PSO (MRPSO). In gen-
eral, the calculation amount of the generating of the exact
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Figure 3: RPSO: the histogram of the 2-dimensional ve-
locity vector when the angle to the reference position θ is
fixed.

rotation matrix is O(n5). However, almost all elements of
the rotation matrix are zero. By using the advantage of
this fact, the calculation amount can be reduced to O(n2).
Based on this exact rotation matrix’s advantage, Bonyadi et
al. proposed the method changes the rotation angle adap-
tively in the search process.

Clerc proposed Standard PSO2011 (SPSO)[9] that re-
alizes the rotation invariance by changing the shape of the
seach area. The velocity update rule of SPSO is described
by the following equations.

vt+1
i = ωvt

i + H(Ct
i, ||Ct

i − xt
i ||) − xt

i (6)

Ct
i = xt

i +
ϕ1(pt

i − xt
i) + ϕ2(gt − xt

i)
3

(7)

H(a, b) is a hypersphere function with the center a and the
radius b. Since the shape of the search area of SPSO is
spherical, the biased search direction is not observed.

Locally convergence rotationally invariant PSO
(LcRiPSO) was proposed by Bonyadi et al [10]. LcRiPSO
is the method combining the perturbed PSO [12] and
LPSO. The random number of LcRiPSO is scalar as well
as LPSO. However, since adding a normal random number
to the reference position, the diversity of LcRiPSO is richer
than LPSO.

vt+1
i = ωvt

i + ϕ1r1

(
N(pt

i, (σ
t
1)2I) − xt

i

)
+ ϕ2r2

(
N(gt, (σt

2)2I) − xt
i

)
(8)

Bonyadi et al. proposed the method changes the variance
σt

1, σ
t
2 adaptively in the search process.

Norm Linked PSO (NLPSO) was proposed by us [11].
In NLPSO, the information of direction to the reference
position is the sign only that is given by the sign function.
Thus, the distribution of the angle of the velocity vector is
not biased when the reference position vector is close to the
coordinate axis.

vt+1
i = ωvt

i + ϕ1R1||pt
i − xt

i ||2sing(pt
i − xt

i)
+ ϕ2R2||gt − xt

i ||2sing(gt − xt
i) (9)

Figure 4 shows the performance of PSO and rotationally
invariant PSOs on 2-dimensional ellipse function [3]. The
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Figure 4: The rotation variance of the PSOs on ellipse func-
tion.
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Figure 5: The results of BBOB.

horizontal axis denotes the rotated angle of the coordinate
system and the vertical axis denotes the median value in
25 trials. In each trial, the number of evaluations is 10000.
From the result, the performance of PSO is degraded when
the coordinate system is rotated. On the other hand, rota-
tionally invariant PSOs are not depended on the angle of
the coordinate system. Since these experiments use only 2-
dimensional function, it is not possible to discuss the per-
formance of these PSOs from the experimental results.

4. The performance of rotationally invariant PSOs

We investigate the performance of these PSOs by BBOB
[13]. In order to evaluate the performane, we use the em-
pirical cumulative distribution functions that are generated
by COCO [14]. We set the recomended parameters. Figure
5 shows the results. In Fig 5, the horizontal axis denotes
the log of the number of evaluation divided by the number
of dimensions, and the vertical denotes the success rate in
instances of each function.

Rotationally invariant PSO is not the method to improve
performance but the method which resolved rotation vari-
ance. Thus, RPSO, MRPSO and NLPSO shows the similar
performance as PSO. However, the results of all functions
indicate that the performance of PSO is the best. Namely,
resolving the search direction bias is the factor of deterio-
rating the performance. Because, in separable function, the
biased search of PSO is advantageous. Thus, in Fig. 5a,
the success rate of PSO is higher than rotationally invariant
PSOs.

In a particularly high-conditined and separable function,
the biased search is advantageous. Figure 6 shows the per-
formance of PSO and RPSO on the separable and non-
separable convex fucntions [5]. In these experiments, the
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Figure 6: Performance of PSO and RPSO on the separable
and non-separable convex function.

maximum number of evaluations is 106, and if the eval-
uation value reaches 10−4 untill the maximum number of
evaluations, this trial is regarded as a success. From the re-
sults, if the condition number is increased, the performance
of RPSO is deteriorated. On the other hand, In the case
of separable function, if the condition number is increased,
the performance of PSO is hardly changed. However, in the
case of non-separable function, if the condition number is
increased, the performance of PSO is rapidly deteriorated.

5. A Novel PSO for high-conditioned and non-
separable functions

In order to solve the high-conditioned and non-sepable
functions, we proposed new rotationally invariant PSO, it
is described by the folloing equations [15].

vt+1
i = ωvt

i + ϕ1r1

(
p̃t

i − xt
i

)
+ ϕ2r2

(
g̃t − xt

i

)
(10)

p̃t
i = pt

i + cd

(
pt

j1 − pt
j2

)
(11)

g̃t = gt + cd

(
pt

j3 − pt
j4

)
(12)

cd is a constant number in the interval [0, 1]. j1, j2, j3 and
j4 are random particle numbers, where i , j1 , j2 , j3 ,
j4. From the central limit theorem, the difference vector
of the personal best follows the normal distribution. Thus,
the proposed method is similar to LcRiPSO. However, the
covariance matrix is different. In LcRiPSO, the covariance
matrix of the perturbation becomes a diagonal matrix. On
the other hand, the covariance matrix of the difference vec-
tor of the personal best is estimated as the inverse Hessian
matrix of the objective function [15]. The estimation of the
inverse Hessian matrix of the objective function is essential
to solve the high-conditioned and non-separable functions
[16]. Also, in order to improve the local search ability, we
applied the selection mechanisim [15].

To confirm the performance of proposed method, we
carry out experiments. Table 1 shows the test functions.
For each function, 25 trials are conducted. The parameter
settings are refer to [15]. The time evolution of the best
evaluation value in each trial is shown in Fig. 7.

From the results, the performance of the proposed
method is better than the conventional PSO in the high-
conditioned and non-separable functions.

- 469 -



Table 1: Test functions, where y := Ax and A is a rotation matrix.

Name Function
Ellipsoid fEllipsoid(x) =

∑n
i=1 106 i−1

n−1 y2
i

Rosenbrock fRosenbrock(x) =
∑n−1

i=1 100(y2
i − yi+1)2 + (yi − 1)2

Schaffer fSchaffer(x) =
∑n−1

i=1 (y2
i + y2

i+1)0.25
(
sin2
(
50(y2

i + y2
i+1)0.1

)
+ 1
)
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Figure 7: Time evolution of the best evaluation value for 10-dimensional test functions.

6. Conclusions

In this article, we clarify that the factor of the rotation
variance of PSO. We introduced typical rotationally invari-
ant PSOs. Futhmore, in order to evaluate the performance
of these PSOs, we carried out experiments using BBOB.
From the result, the general performance of PSO is bet-
ter than rotationally invariant PSOs. The reason is that ro-
tationally invariant PSOs do not solve the separable/non-
separable and high-conditioned functions and PSO can
solve the separable and high-conditioned functions.

To overcome this problem, we proposed new PSO for
non-separable and high-conditioned functions. Also, in or-
der to investigate the performance of proposed method, we
carried out experiments. From the results, we clarified that
our proposed method can solve the high-conditioned and
non-separable functions.

Acknowledgment

This work was supported by JSPS KAKENHI Grant-
in-Aid for Challenging Exploratory Research Number:
16K14271, Grant-in-Aid for Scientific Research(C) Num-
ber: 15K06077.

References

[1] J. Kennedy and R. Eberhart, in Proc. of IEEE ICNN,
vol.4, pp.1942–1948 vol.4, 1995.

[2] Y. Shi and R. Eberhart, in Proc. of IEEE CEC, pp.69–
73, 1998.

[3] W. M. Spears, D. T. Green, and D. F. Spears, Swarm
Intelligence, vol.1, no.2, pp.34–57, 2010.

[4] N. Hansen et al., Applied Soft Computing Journal,
vol.11, no.8, pp.5755–5769, 2011.

[5] A. Auger et al., 8th International Symposium SEA
2009, pp.3–15, 2009.

[6] D. N. Wilke et al., International Journal for Numerical
Methods in Engineering, vol.70, no.8, pp.985–1008,
2007.

[7] D. N. Wilke et al., International Journal for Numerical
Methods in Engineering, vol. 70, no. 8 pp.962–984,
2007.

[8] M. R. Bonyadi et al., Journal of Heuristics, pp.2–8,
2014.

[9] M. Clerc, “Standard Particle Swarm Optimisation,”
HAL open access archive, 2012.

[10] M. R. Bonyadi et al., Swarm Intelligence, vol. 8,
no. 3, pp.159–198, 2014.

[11] Y. Hariya, T. Kurihara, T. Shindo, and K. Jin’no, “A
study of robustness of PSO for non-separable evalua-
tion functions,” in Proc. NOLTA, pp.724–727, 2015.

[12] Z. Xinchao, “A perturbed particle swarm algorithm
for numerical optimization,” Applied Soft Comput-
ing, vol.10, no.1, pp.119–124, 2010.

[13] N. Hansen et al. , Report, pp.1–17, 2014.

[14] http://coco.gforge.inria.fr/

[15] Y. Hariya, T. Shindo and K. Jin’no “A Novel Particle
Swarm Optimization Algorithm for Non-Separable
and Ill-Conditioned Problems,” IEEE SMC, accepted,
2016.

[16] N. Hansen, “The CMA evolution strategy: A tuto-
rial,” Vu le, vol.102, no.2006, pp.1–34, 2011.

- 470 -


