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Abstract—We numerically investigate behavior of four
weakly coupled metronomes using equations of motion of
the metronomes. In the numerical simulations, the param-
eter values of the equations of motion are experimentally
decided from the experimental apparatus, where the four
metronomes are put on a board hung by strings. As a
result, we found that synchronization of metronomes de-
pend on frequency and initial angles. In addition, we also
found the importance of the individual difference between
metronomes, which becomes clear by the numerical simu-
lations.

1. Introduction

In our world, various rhythms exist, for example sea-
sonal transitions, neuronal activities, and collective behav-
ior of animals and insects[1][2]. In these real systems, even
though each individual has its own rhythm, it is widely ac-
knowledged that their rhythms synchronize by mutual cou-
plings or external forces. We can also observe the synchro-
nization by using weakly coupled metronomes[3][4][5].
For example, if we put a number of metronomes on a board
hung by strings, the metronomes eventually synchronize.

In this paper, we numerically investigate the synchro-
nization phenomenon of metronomes by using a mathemat-
ical model of the motion of four metronomes which are put
on a board hung by strings. When we conduct numerical
simulations, we used the parameter values in the mathe-
matical model estimated from the handmade experimental
apparatus. As a result, the time necessary for the in-phase
synchronization becomes shorter when the frequency of the
board becomes larger.

2. Mathematical model

Figure 1: Experimental apparatus

Figure 1 shows a handmade experimental apparatus. The
experimental apparatus is comprised of four metronomes
put on a wooden board hung by four strings. The equation
of motion of the experimental apparatus shown in Fig. 1 is
approximately described as follows:

θ̈i = −2ζiωiθ̇i − ω2
i sin θi − (ωi/ωp)2θ̈p cos θi, (1)

αθ̈p = −2ζpωpθ̇p − αω2
pθp − γη

N∑
i=1

θ̈i(θp sin θi + cos θi)

−ωpγη

N∑
i=1

θ̇2i (θp cos θi − sin θi), (2)

where θ [rad] is an angle, ω [rad/s] is a natural angular fre-
quency, ζ is a damping ratio, α = (1 + Nγ), γ is a ratio
of mass of a metronome to that of the board, η is a ratio
of the length of the pendulum attached the metronome to
the length of the string. The subscript i of θ, ω, and ζ cor-
responds to the ith metronome, and p corresponds to the
board. In the numerical simulations, we determined the
parameter values in Eqs.(1) and (2) from the experimental
apparatus shown in Fig. 1. The oscillation frequency fi of
the ith metronome is estimated from a metronome called
’Lupina’ produced by Nikko Seiki Co., Ltd [4]. Even if
we set fi(i = 1, 2, 3, 4) to 1.4 [Hz] (168[bpm]) by adjusting
the sliding weight of the pendulum in Lupina, there exist
individual differences between the metronomes. Then, os-
cillation frequencies are slightly different from each other.
The estimated values are f1 = 1.385 [Hz], f2 = 1.376
[Hz], f3 = 1.389 [Hz] and f4 = 1.382 [Hz]. From the
oscillation frequencies, the angular frequency is calculated
by ωi = 2π fi. In addition, the values of parameter of the
pendulums are ζ1 = 0.0226, ζ2 = 0.0228, ζ3 = 0.0231,
and ζ4 = 0.0237. The parameter values of the board are
ζp = 0.00113, γ = 0.024, η = 0.01ω2

p/g, and α = 1.072. In
the numerical simulations, the absolute value of the angu-
lar velocity ωi of the pendulum is increased by 25.8 [deg/s]
due to the impulsive force of the metronome when the an-
gle θi becomes ±10◦. Then, metronome can continue to
oscillate.

3. Results

3.1. Time-series data

Figures 2 and 3 show the time-series of the angle of each
metronome. The horizontal axis is time [s], and the vertical
axis is the angle θi [deg].
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Figure 2: Time-series θi(t) of four metronomes. fp =
1.200[Hz], θ1(0) = 60◦ , θ2(0) = 20◦, θ3(0)= −20◦, and
θ4(0) = −60◦.θi’s are plotted in red, green, blue and black
curves.

Figure 3: The same as Fig.1, but for fp = 1.600[Hz]，and
θ1(0) = θ2(0) = θ3(0) = θ4(0) = 60◦.

In Fig. 2, the initial angles of the four metronomes are
θ1(0) = 60◦ , θ2(0) = 20◦, θ3(0)= −20◦, and θ4(0) = −60◦.
Although the amplitudes of θ2 and θ3 are small at the initial
state, their amplitudes reach to their maximum level which
is about 60◦ when the time is around 8 [s]. After 40 second
later, the four metronomes starts to synchronize. In Fig. 3,
θ1(0) = θ2(0) = θ3(0) = θ4(0) = 60◦. Although the initial an-
gles of all metronomes are set to 60◦, they start to separate
from each other when the time is around 8 [s] because of
the individual differences. We can then observe that a spe-
cific pair of metronomes synchronizes when 40 ≤ t ≤ 48.
However, their synchronized metronomes separate after 96
seconds, and then a different pair of metronomes synchro-
nize.

3.2. Relationship between frequencies of the
metronomes and the board
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Figure 4: Relations between the mean frequency fs of the
metronomes in the synchronous state and the frequency fp
of the board.

In Fig. 4, the circles indicate the in-phase synchroniza-
tion, the triangle indicates the state that the in-phase syn-
chronization and the anti-phase synchronization coexist,
and the squares indicates the anti-phase synchronization.
The horizontal axis shows the frequency of the board, and
the vertical axis shows the average frequency of the four
metronomes.

As shown in Fig. 4, when the frequencies of the
metronomes are equal to that of board, fs reaches the
largest value. From these results, when fs is large, the
metronomes acquire energy from the board. When the
frequencies of the metronomes approaches to that of the
board, the metronomes are likely to acquire energy from
the board.

3.3. Time necessary for the in-phase synchronization

We next investigate the time required for the in-phase
synchronization when we change the frequency of the
board. In these numerical experiments, we set the initial
states of the metronomes to θ1(0) = 60◦, θ4(0) = −60◦,
θ2(0) ∈ [−60◦, 60◦], and θ3(0) ∈ [10◦, 60◦].
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(a) fp = 1.2 Hz
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(b) fp = 1.3 Hz
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(c) fp = 1.4 Hz

Figure 5: Time necessary for the in-phase synchronization
when metronomes are identical.

-60 -40 -20  0  20  40  60
θ2 [deg]

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

θ 3
 [d

eg
]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

T
im

e[
s]

(a) fp = 1.2 Hz
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(b) fp = 1.3 Hz
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(c) fp = 1.4 Hz

Figure 6: Time necessary for the in-phase synchronization
when metronomes are different.
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The white areas in Figs. 5 and 6 indicate the damping os-
cillation. The colors show time necessary for the in-phase
synchronization. From Fig. 5 (a) and (b), the time nec-
essary for the in-phase synchronization becomes shorter
when the frequency of the board becomes larger.

4. Conclusion

We fixed the frequencies of four metronomes to 1.4[Hz]
in this study and performed numerical simulation of syn-
chronization of four metronomes. When the frequency
of the metronomes approaches to that of the board, the
metronomes are likely to acquire energy from the board.
When the frequency of the metronome is larger than that of
the board, we showed that metronomes synchronize within
approximately 40 seconds. In addition, we showed exam-
ples of the phase set to two specific initial states when
the frequency of the metronome is smaller than the fre-
quency of the board. We clarified that the frequency of
the metronomes reaches the highest value when the natural
frequency of the metronome is close to that of the board.
In case of four metronomes, we can set initial angles into
two pairs of symmetric angles in comparison with an ex-
periment in the synchronization of three metronomes[5].
We confirmed that time necessary for the in-phase syn-
chronization becomes shorter if there was no individual
difference. Furthermore, we confirmed that the initial an-
gles which accomplish the synchronization randomly exist
when the frequency of the metronomes and the frequency
of the board are identical. When the frequencies of the
metronome and the board are identical and the metronomes
synchronize, the frequency of the metronomes increases.
However, the range of synchronization with no individual
difference becomes small. Therefore, existence of the indi-
vidual difference plays an important role for synchroniza-
tion.

In this paper, we conducted only numerical simulations
of the four metronomes. However, it is inevitable to com-
pare numerical results and experimental results. As for the
case of three metronomes, we have already reported sev-
eral interesting results[5]. It is an important future issue to
analyze the motion of four metronomes experimentally.
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