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Abstract—Shishi-odoshi is a traditional device found in
Japanese gardens; composed of a bamboo tube that when
filled with water revolves to empty and makes a clank-
ing sound It consists of a water-filled bamboo tube which
clacks against a stone when emptied, and the clack scars
beasts and birds from gardens. For a fluctuating flow rate,
intervals between the clacks distribute. The flow rate per
unit time and the distribution function of the clack inter-
val can be respectively identified as a velocity of a random
walker and a first passage time distribution. The rate func-
tion of the flow rate per unit time is derived not according
to its definition but by use of the distribution function of a
first passage time. This idea is illustrated by coin-tossing
large-deviation statistics.

1. Introduction

Shishi-odoshi is a water-filled hydraulic bamboo clap-
per against a stone when emptied. It is a simple device
to drive away birds and animals, which makes a sound by
water falling down. Its examples are illustrated in [1]. In
this paper, we assume that the flow rate or the amount of
water pouring into Shishi-odoshi per unit time fluctuates.
And we discuss a relationship of the distribution of inter-
vals between the clacks to large deviations of the flow rate
per unit time. Although our basic idea was first described
in [2] in the context of fluctuations of the flow rate, it can be
generalized in a sense that the rate function of a random or
chaotic variable can be derived from its first-passage-time
problem.

2. Formalism

In this section, the common formalism of the previous
[3] and the present studies is described.

Let V be a volume of Shishi-odoshi’s water container.
The time-dependent flow rate per unit time is denoted as
f(®). Att =ty we start to pour water to the Shishi-odoshi,

and it is filled at t+ = f9 + n. In this case, the relation
fo+n

fOdx =

between the clacks of Shishi-odoshi. In the following, an
ideal Shishi-odoshi is considered, which discharges instan-
taneously a total amount of water at full level. One may
regard f, V and n respectively as a velocity of a random

V is satisfied, in which » is an interval

walker starting from the origin, a distant goal and a first
passage time to the goal is reached. Thus, measuring the
intervals between the clacks of Shishi-odoshi, we can con-
struct a distribution of the first passage time.

The local average z of the flow rate per unit time is given
by

fo+n
J, fodxy
Z = - =

n n

The first passage times n distribute. So do the local aver-
ages z due to the above relation. The distribution of z de-
pending on n is denoted as P(n, z), from which we can ob-
tain large deviation statistics of the flow rate per unit time.
If n is much larger than its average auto-correlation time
of f(¢), P(n, z) is scaled as P(n, z) = P(n,z) exp[-ny¥(2)], in
which P(n,7) is an algebraic factor depending on n and (z)
is called rate function of the flow rate per unit time [4]. Let
z be the long-time average as z. The rate function is con-
W) =0. Asa
dz .=
consequence of the central limit theorem, the rate function
is quadratic around z = Z.

In our novel viewpoint inspired by the shishi-odoshi, we
observe not directly the local average z or its instantaneous
value of the flow rate per unit time but the first passage
time n corresponding to the interval between the clacks in
the case of shishi-odoshi. The distribution P(n, z) of z can
be regarded as a distribution Q(V,n) of n via the relation
z=V/n.

The transformation of variable from z to V = nz satisfies
the conservation of probability P(n,z)dz = Q(V,n)dV, so
that we have

cave up, which satisfies Y(2)|,.; =

dv
P(n,z) = O(V, n)d—Z =nQ(V, n),

P(n,z) =nQ(V,n),
and the rate function (z) can be indirectly estimated as
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plotted against z = V/n, where n = V/z is the long time
average of the first passage time.
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Figure 1: The first passage time distributions g(V, n) plotted
against n for V =2 (+), 3 (X) and 10 (x)
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Figure 2: The approximate rate functions
1 nq(V,n .
—— q(V:n) plotted against V/n for V. = 2

n 8 2Vg(V.2v)
(+), 3 (x) and 10 (*). The exact rate function (upper line)
and the parabola coming from the central limiting theorem
(lower line) are also drawn.

3. Discussion based on a concrete example

A concrete example is described in the following. An
event that a waterdrop falls or does not fall is assumed to
occur at regular unit intervals with equal probability, say,
according to a fair coin tossing. In this case, f is a bi-
nary variable O or 1 depending on a integer-valued time
step. Note that the water dropping interval in the real drip-
ping faucet is strongly related to each volume of succe-
sive waterdrops which may be called the flow rate in this
case [5]. The probability r(n,z) that the head appears nz
times in n time steps, equivalently the probability that a
waterdrop falls nz times in n time steps, yielding the flow
is given by r(n,z) = ”2nnz =
, which can be expressed by V instead of z

nz

n°’

rate per unit time z =
n!

(nz2)!(n — nz)!12"

as r(n,V/n) = (V)'(nn——V)'Z" The probability p(n, V/n)

that the water container with volume V is filled exactly
Vv 1 V-1

at time step n is given by p(n, —) = -rn - 1, ——) =
n 2 n-1

(n—-1!

V-Dln-V)2n

of this probability are plotted for V = 2, 3 and 10. Note

that both P(n,z) and Q(V,n) in the preceding section are

probability densities and that both r(n, z) and g(V, ) in this

section are not probability densities but probabilities.

Taking a large-container limit V — oo, we apply Stir-
ling’s formula log N! ~ Nlog N — N to the factorials, so

= q(V,n). In Fig. 1, n-dependences

1 \%
that we have the rate function —— log p(n, —) = ¥(2) =
n n

zlogz+(1-z)log(1-z)+log 2 withz = ¥. At the long-time
di
average z = z = 1/2, the relations y(z)|._; = lz(z) =
T lz=z

are satisfied. In the neighborhood of z = 7, ¥(z) is approxi-

1
mated by the parabola y(z) = 2 (z - E) , which implies the

central limiting theorem.
The rate function of the flow rate per unit time can be

estimated as
1 nq(V,n)

n % 2Vg(V.2v)

plotted against z = V/n, where n = V/z = 2V is the long
time average of the first passage time, which is shown in
Fig. 2 for small-container cases V = 2 (+), 3 (X) and 10 (%)
in comparison with the large-container limit (upper line)
and the parabola indicating the central limit theorem (lower
line). Although the latter holds only around the long time
average, it is also drawn outward from the range in appli-
cation of the central limiting theorem for eye guidance. In
spite of small-container cases, a relatively good agreement
is observed with the large-container limit. A systematic
discrepancy is assumed to come from the fact that the first
passage time distribution in a small-container case is asym-
metric around the maximum, which eventually becomes
symmetic in a large-container limit, as shown in Fig. 1.
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4. Concluding remarks

It is difficult to observe fluctuating flow rates in a realistic
system, as we mentioned in our preceding study [3].

Our indirect derivation of the rate function from the dis-
tribution of the first passage time without observing the in-
stantaneous value f(#) and its local average z can be applied
to any stationary fluctuation of f(¢), although we confined
ourselves to large deviations of the flow rate per unit time
inspired by shishi-odoshi. One may regard the relation that
the sum of a random variable V is equal to the local average
z multiplied by the time span n for coarse-graining as the
relation that the distance V is equal to the local average of
a random velocity z multiplied by the first passage time n.

The concrete model described in the preceding section
can also be regarded as a one-directional random walk,
where the random walker either stops or jumps in a pos-
itive direction. A straightforward application to various
mathematical or numerical models and experiments de-
scribing deterministic chaotic diffusion, where the large de-
viation statistics are approximately obtained from the first-
passage-time distributions.
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