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Abstract—This paper analyzes the basin of attraction of
a stable equilibrium point representing a steady operating
condition of synchronous generators in a two-site electric-
ity and heat supply system. The analysis is used for consid-
ering the effect of heat transfer management on the dynam-
ics of the generators. The basin of attraction becomes small
depending on the heat transfer rate, and a change of the set-
points of the combined heat and power plants for regulating
the heat transfer rate possibly destabilizes the generators.

1. Introduction

This paper numerically studies a dynamical model of
two-site electricity and heat supply system based on our
previous studies [1–3]. We examine the basin of attraction
of a stable equilibrium point representing a steady oper-
ating condition of synchronous generators in the electric
sub-system. This is of basic significance for understand-
ing the system’s response to an open-loop control of the
energy flows in the two-site system. In [3], we proposed
a state-feedback (closed-loop) controller that enables reg-
ulation of electricity and heat flows based on the nonlin-
ear control technique [4, 5]. This controller provides a tra-
jectory of state variable which realizes the desired energy
flows. However, it seems not easy to estimate the basin of
attraction of the desired trajectory because of the complex-
ity of the closed-loop system, in which the dynamics of the
electric and heat sub-systems are coupled each other.

In this paper, we consider an open-loop control in which
the set-points of Combined Heat and Power (CHP) plants
(including gas turbines and generators) are already deter-
mined to realize the desired energy flows. To the open-loop
control, the responses of the electric and heat sub-systems
can be considered separately. In a viewpoint of dynami-
cal systems theory, the studied model of the electric sub-
system appears as a model of double swing dynamics with
external forcing [6–8]. In [6–8], the basin structure of the
model of swing dynamics was investigated by taking sys-
tematic slices of the phase space. In [9], a similar method
for analyzing basin structure of dynamical systems is de-
veloped by using cell state space and mapping on it. Based
on these studies, in [2], the basin portraits of the dynami-
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Figure 1: Block diagram of the two-site system. The ar-
rows show the positive directions of energy flows.

cal model of the two-site system was visualized under sev-
eral fixed values of the set-points of the CHP plants. The
visualization was then used for understanding an ideal re-
sponse of the two-site system to a step-wise change of the
set-points of the CHP plants. Here, we discuss this in a
more realistic situation, and consider a ramp-wise change
of the set-points.

2. Mathematical model

This section introduces a dynamical model of the elec-
tricity and heat supply system based on [1, 2]. Figure 1
shows the block diagram of the two-site system in which
the positive directions of energy flows are denoted. The no-
tion of site is a unit of energy system that includes a CHP
plant, power load, and heat load. The two sites are con-
nected to an infinite bus through a transmission line and
are interconnected by a heat conduction pipe.

2.1. Electric sub-system

The electric sub-system in Fig. 1 consists of the two gen-
erators, power loads, transmission lines, and infinite bus.
The model of electric sub-system is based on the swing
equation [10] with δi representing the electric angular po-
sition of rotor with respect to the infinite bus, and ωi the
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deviation of rotor speed relative to the synchronous speed
ωs. The variable δi is in the electrical radian, and ωi is
scaled by ωr :=

√
ωs/2Hi, where Hi stands for the per-unit

time constant of rotor. The dynamics of generators are rep-
resented as follows: for i = 1, 2,

dδi

dt
= ωi,

dωi

dt
= Pmi − Diωi − Pei(δ1, δ2), (1)

where Pmi stands for the mechanical input power to the
generator, and Di for the damping coefficient. The func-
tion Pei stands for the electric output power and is given
by

Pei =
∑

j∈{1,2,∞}

EiE j{Gi j cos(δi − δ j) + Bi j sin(δi − δ j)}, (2)

with the symbol ∞ representing the infinite bus, and δ∞ =

0. The parameter Ei corresponds to the voltage behind syn-
chronous reactance, and Gi j + iBi j are the transfer admit-
tances.

2.2. Heat sub-system

The heat sub-system in Fig. 1 consists of the conduction
pipe and loads. Here, we do not consider the transient dy-
namics and losses of heat transfer through the heat con-
duction pipe. This is relevant for considering the open-
loop control of the two-site system. By using the following
model, the set-points, i.e. the fuel inputs to the CHP plants,
are determined to realize a desired heat transfer rate Q′n. In
Fig. 1, the conservation of energy at each site induces the
following equality:

Q′chpi = Q′ni + Q′Li. (3)

Further, the heat output rates Q′n1 and Q′n2 satisfy

Q′n1 = −Q′n2 := Q′n, (4)

where Q′n represents the heat transfer rate from site #1 to
site #2.

2.3. Gas turbine

The gas turbine at site #i converts the gas input rate Pgasi
to both the mechanical power Pmi and the heat rate Q′chpi.
Because its time response is sufficiently fast compared with
the electromechanical dynamics of the generators [11], the
dynamics of the gas turbine are not considered in this paper.
Then, the instantaneous conversion of energy at each gas
turbine is represented by[

Pmi
Q′chpi

]
=

[
ηei
ηhi

]
Pgasi. (5)

Throughout this paper, the parameters ηei and ηhi are con-
stant and satisfy ηei + ηhi < 1. The constant ηei represents
the thermal efficiency of the gas turbine at site #i, and ηhi
the ratio of heat output rate to gas input rate.

2.4. Derived model

Consequently, the dynamics of the two-site electricity
and heat supply system are represented by the following
nonlinear dynamical model:

dδ1

dt
=ω1, (6a)

dω1

dt
=
ηe1

ηh1
(Q′n + Q′L1) − D1ω1 − Pe1(δ1, δ2), (6b)

dδ2

dt
=ω2, (6c)

dω2

dt
=
ηe2

ηh2
(−Q′n + Q′L2) − D2ω2 − Pe2(δ1, δ2). (6d)

The dynamical model (6) contains the parameters Q′n and
Q′Li of the heat sub-system. In the rest of this paper, with
this model, the effect of the heat sub-system on dynamics
of the electric sub-system will be studied.

3. Steady operating conditions

This section analyzes equilibrium points of the dynam-
ical model (6) in order to investigate the steady operating
conditions of the generators. Since the dynamical model
(6) has the same formulation as the classical swing equa-
tions, the analysis method used in [12] is applied for inves-
tigating how the steady state characteristics depend on Q′n.
From the condition dδi/dt = 0 at equilibrium points, we
have

ω∗i = 0, (7)

where ω∗i represents the value of ωi at equilibrium points.
From the condition dωi/dt = 0, the values of phase angles
δ∗1 and δ∗2 satisfy the following equations:

α1 = sin δ∗1 + κ1 sin(δ∗1 − δ
∗
2) + λ1 cos δ∗1 + µ1 cos(δ∗1 − δ

∗
2),

α2 = sin δ∗2 + κ2 sin(δ∗2 − δ
∗
1) + λ2 cos δ∗2 + µ2 cos(δ∗2 − δ

∗
1),
(8)

where α1 and α2 are defined by

α1 :=
ηe1(Q′L1 + Q′n) − ηh1E2

1G11

ηh1E1E∞B1∞
, (9a)

α2 :=
ηe2(Q′L2 − Q′n) − ηh2E2

2G22

ηh2E2E∞B2∞
, (9b)

and κi, λi, and µi are given by

κi =
E1E2B12

EiE∞Bi∞
, λi =

Gi∞

Bi∞
, µi =

E1E2G12

EiE∞Bi∞
. (10)

By solving the equation (8), the values of δ∗1 and δ∗2 are
numerically determined. Fig. 2 shows the result on exis-
tence and number of equilibrium points. The values of pa-
rameters are shown in Tab. 1. In the region Rn (n = 2, 4, 6),
there are n distinct equilibrium points. In the three regions,
one of the equilibrium points is asymptotically stable, and
the others are unstable. The stable equilibrium point repre-
sents a synchronized motion of the two generators in which
they operate with the same frequency as the infinite bus.
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Figure 2: Numerical result on existence and number of
equilibrium points. In the region R2 (or R4, R6), there are
two (or four, six) distinct equilibrium points of the dynam-
ical model (6).

Table 1: Values of parameters for numerical analysis

Rated power Pb 1.0 MW
Synchronous speed ωb 2π · 60 Hz
Inertial constant Hi 10 s
Damping coefficient Di 0.005
Voltage Ei 1.0
Transfer susceptance (#i,∞) Bi∞ 1.0
Transfer conductance (#i,∞) Gi∞ −0.1
Transfer susceptance (#1, #2) B12 0.5
Transfer conductance (#1, #2) G12 0.05
Transfer conductance (#i, #i) Gii 0.05
Heat load QLi 0.9
Coefficient of electricity output ηei 0.40
Coefficient of heat output ηhi 0.40

Here, we consider the stability of the equilibrium points
due to the quasi-static changes of the parameters of the
heat sub-system. As Q′n changes, the steady operating point
moves in the (α1, α2)-plane along the straight line given by

e1α1 + e2α2 = (Q′L1 + Q′L2) − e3 (11)

where the coefficients e1 to e3 are determined by the pa-
rameters of the electric sub-system and are given by

e1 :=
ηh1

ηe1
E1E∞B1∞, e2 :=

ηh2

ηe2
E2E∞B2∞,

e3 :=
ηh1

ηe1
E2

1G11 +
ηh2

ηe2
E2

2G22. (12)

The equation (11) is obtained by eliminating Q′n from (9).
Since the line (11) is parameterized by Q′L1 + Q′L2, a steady
operating condition is determined by the values of Q′n and
Q′sum := Q′L1 + Q′L2. In Fig. 2, the red line shows (11) with
Q′sum = 1.8. The synchronized operation of the generators
is achieved when the operating condition determined by Q′n
and Q′sum is kept within R2.

(a) Q′n = 0.0 (b) Q′n = 0.2

(c) Q′n = 0.4 (d) Q′n = 0.5

Figure 3: Visualization of basins of attraction. The solid
line shows the equilibrium points under various Q′n be-
tween 0 and 0.5. The circle (◦) shows the equilibrium point
for each Q′n, and the dot (•) for Q′n = 0.

4. Basins of attraction

This section analyzes the basins of attraction of the sta-
ble equilibrium points under several fixed values of Q′n.
Based on the analysis, we consider the effect of heat
transfer management on the dynamics of the electric sub-
system. A possible open-loop control is then discussed in
terms of a transient instability. Following [6–8], the basin
of attraction is visualized by taking a two-dimensional slice
of {(δ1, δ2, ω1, ω2) ∈ X | ω1 = 0, ω2 = 0} in the entire phase
space X := T2 ×R2, where T stands for the torus, and R for
the set of real number. For the slice, initial conditions on a
grid of 401× 401 points were numerically integrated. Each
point is colored according to the attractor reached from the
corresponding initial condition.

Fig. 3 shows the visualization of the basins of attraction
under several values of Q′n. Under the current setting of
the parameters, the system (6) has four attractors. One
attractor is the stable equilibrium point representing the
steady operating condition: this is shown by circle (◦) in
the figure, and its basin is colored green. A second at-
tractor is a periodic orbit, in which the generator #1 op-
erates at a desynchronized manner with the infinite bus: its
basin is colored red. A third one is another periodic orbit,
in which the generator #2 is desynchronized; its basin is
colored orange. In the forth attractor, both generators are
desynchronized; its basin is yellow. Fig. 3 indicates that the
heat transfer management affects the responses of the elec-
tric sub-system, and the basins of attraction of the stable
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Figure 4: System’s responses to ramp-wise changes of the
heat transfer rate under Td = 0, 0.5, and 1.0 s. The solid
line shows the response of the generator #1, and the broken
line the generator #2.

equilibrium points become small on the two-dimensional
slices as Q′n increases. In [2], a similar result is obtained
for Di = 0.21 and λi = µi = 0.

This analysis suggests a possibility of instability due to a
change of Q′n. In Fig. 3, the solid line shows the stable equi-
librium points under various Q′n between 0 and 0.5, and the
dot (•) the equilibrium point under Q′n = 0. The basins of
attraction directly illustrates the following two ideal opera-
tions of the two-site system. Since there exists an equilib-
rium point for each Q′n, quasi-static change of the set-points
of the CHP plants enables the change of operating condi-
tions of the generators along the lines in Fig. 3. However,
a step-wise change of Q′n from 0 to 5.0 desynchronizes the
generator #1 because the dot (•) exists outside the domain
of attraction of the stable equilibrium point in Fig. 3d.

As a realistic situation, an open-loop control of the heat
transfer rate Q′n can be considered as in between the above
two ideal situations. In this paper, based on [13], we con-
sider a ramp-wise change of the set-points of CHP plants
from Q′n = 0 to 0.5. The duration Td of the change of
the set-points is an important parameter: Td = 0 corre-
sponds to the step-wise change, and Td = ∞ the quasi-
static change. In an engineering viewpoint, the range of Td
where the instability does not occur is of significant impor-
tance. Fig. 4 shows the system’s responses for Td = 0, 0.5,
and 1.0 s. The red line shows the case of Td = 0 (step-
wise change), and the generator #1 is desynchronized as
mentioned above. In the case of Td = 1.0 s (blue line), the
variables δi and ωi converged to the values of the equilib-
rium point. In the case of Td = 0.5 s, it is observed that
the generator #1 is desynchronized. The analysis of the re-
lationship between Td and the basins of attraction is future
work and discussed at the end of this paper.

5. Conclusions and discussion

In this paper, we analyzed the basins of attraction of
equilibrium points representing steady operating condi-
tions of synchronous generators in a two-site electricity and
heat supply system. The slices of the basins were visu-
alized under various fixed values of heat transfer rate Q′n.

The analysis indicated that the heat transfer management
affected the responses of the electric sub-system, and the
basin of attraction of the stable equilibrium point became
small depending on Q′n. Furthermore, a possibility of insta-
bility was discussed for step-wise and ramp-wise changes
of the set-points of the CHP plants. It was observed that
the instability possibly occurred under a ramp-wise change
with a small values of the duration Td.

Finally, for the future work, we discuss the possibil-
ity of analyzing Td via the basins of attraction. After
the time t = Td, from the uniqueness of the solution of
(6), the resultant behavior is determined by the basins in
Fig. 3 if the state trajectory passes the slice determined by
ω1 = ω2 = 0. However, in general, this is not the case be-
cause the two dimensional slice is not transversal in the full
four-dimensional phase space. Nevertheless, it is observed
in the case of Td = 0.5 s (green line) in Fig. 4 that the state
passes a slice of {(δ1, δ2, ω1, ω2) ∈ X | ω1 = ε, ω2 = 0} for
a small ε. Thus, if the basin structure does not vary dras-
tically depending on the values of ωi, the visualization of
the basins in Fig. 3 may be used for the analysis.
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