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Abstract—In this study, we propose an novel piecewise-constant chaos generator, and analysis the
autonomous 3-dimensional piecewise-constant dyhaotic behavior by using 2-D return map. The re-
namical system without constraint, and analyze theults implies chaos generation. Some theoretical re-
nonliner phenomena by using two-dimensional(2sults are confirmed in laboratory.

D) return map. The return map is derived rigorously
and is represented by explicit expressions. In addb  3.p chaos-generationg piecewise-constant os-
tion, some experimental results are obtained in the cjator
extremely simple circuit.
Figure 1 shows the circuit diagram of the
piecewise-constant circuit. This circuit consists
1. Introduction of six voltage-controlled current sources(VCCSs)
that has signum characteristic and three capacitors.

The piecewise-constant systems[1] exhibit manyhese VCCSs are realized by operational transcon-
nonliner phenomena, chaos, bifurcation and so oguctance amplifiers. In order to describe the dynam-
in spite of the simple dynamics. The systems cafts, we define two functions as follows:
be analysed with comparatice ease, because the
piecewise-solutions are linear and the connectiongyn :{ 1forx=0 U = {1 forx=0 1)
of the solutions are described explitly on the bound- -1forx<0 0 forx < 0.
ary[2]. Therefore, the piecewise-constant system.?
are useful for demonstrating nonlinear phenomena.
For example, regorous analysis of quasiperiodic bi- (x = Sgnf/ — 1)
furcation in pleCGWlse'ConStant SyStemS with eXte.r' y — —Sgné() —b- Sgn@) +a- U(Z) . Sgn&) (2)
nal forces have been reported[3][4], and analysis |-
of synchronization in a coupled piecewice-constant z=-Sgng).

system have been discussed [4]. In addition, metlyhere “- "represents the derivative of and the

ods to derive rigorous solutions have been devetp|lowing normalized variables and parameters are
oped for bath autonomous and non-autonomougsed :

hen, the circuit dynamics is described as follows:

piecewice-constant systems[4][5]. However, pre- . C, C, 1
vious piecewise-constant circuits are discribed by = ﬁt’ X = ﬁvl’ y= EVZ’ zZ= EVg,
constrained equations, that is, state variables are |3 | 3 2

constrained in partial hyperplanes of phase spaca= -2, b= -2, (3)
depended on some conditions. Therefore, some ls ls

considerations are infiicient about more natu- lg, l5,andl, are bias currents of operational transcon-
ral systems without constraint. In this study, weductance amplifiers that are represented by trapezoid
present a novel three-dimensional(3-D) autonomousymbols in Fig.1.
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The dynamics are represented by twelve loca. 2-D return map

vector fields and the conditions. These are shown ) )
In order to analyze the chaotic behavior, we focus

in Table 1. navior
on parametea = 1.5,b = 0.4 for simplicity and
derive 2-D return map. First, we define the domain
+ S:

S= {x= (X’ Y, Z)} | y= 1. (4)

The trajectory starting fronxg on S must return to
X1 on S. Then, we can define a 2-D return mgp
from S to itself.

F:S—S (x1,2) = Fi(x0, 20)
= (fi(x0,20),0i(%0, 20)) (1=0,12..7). (5)
There are eight kind of trajectories that fragto

itself. The trajectories are derived by the thresholds
that are given as follows:

ip

Fig 1: Implemented circuit(oc vy, Yy oc Vo, Z o V3)
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Fig 2: Typical chaotic attractor 4.5 b=0.7)
(a)(b)(c) Regorous solutions (d)(e)(f) Laboratory Fig 3: DomainS
measurements 2.0 Jdiv.]
Figure 3 shows the local regions of mdps. By
using solution of (2), 2-D return map is derived rig-
Figure 2 shows a typical chaotic attractor withgrously and is represented by explicit expressions.
a = 15b = 0.7. We measured same attactor in
laboratory. (X1, 21) = Fi(%0, 20)
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for
for
for
for
for
for
for
for

X0 > 20, % < 0,20 <0,

X0 <29, % < 0,2 <0,
Xo>Thy,Xg>Thy, 25 <0,
Xo < Thp,Xo>Thy,29 <O,
X0 <0, >0,

Xo > Thy,0< %o < Thy,
Xo < Thy,0 < Xg < Thy,
X0 > 0,29 >0,

Fo(Xo, 20)
F1(xo0, 20)
F2(x0, 20)
F3(Xo, 20)
F (X0, 20)
Fs(Xo, 20)
Fe(x0, 20)
F7(Xo, 20)

(7)

where (fi, g) are shown in Table 2.
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Fig 4: Chaotic attractor (a), 2-D Return map (@)
15b=04.

Figure 4 is chaotic attractor and corresponding 2-
D return map. The behavior of system without tran-

sients is governed by onlio, F1, and F,. There-

fore, discussion about stability of dynamics can be

considered byFq, F1, andF,. The stability can be

=0
DFa(x,y) = [_b_bfl_ 1 ]
b+1

for xo>Thy, % >Thy, 29 <O.
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By using these Jacobian matrices, we obtained the
eigenvalues of Jacobian matrix of the times com-
position map for larga theoretically. Since any one
of the absolute values of eigenvaluesiis> 1, we
can say that the attractor shown in Fig. 4 is unstable.

4. Conclusion

We realized 3-D autonomous piecewise-constant
chaos generator without constraint. Using 2-D re-
turn map, we confirmed the unstability of the chaotic
behavior. In the future, we will clarify the existence
region of chaotic attractor.
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analyzed by using eigenvalues of Jacobian matrix of

2-D return map. Each Jacobian matrices are expli
ity given as follows,

DF =
o= | 5oty g
for Xo>12zy,% <0, <0,
_2b-2a _ 1 1- —b+2a-1
DFi(xy) =[ Hha N }
—b-1 —b-1
for Xo<zy,% <0, <0,
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Table 1: Local vector fields and regions for

k a(K) Dx

0 ‘(-1 1+b, 1) (XIx<0,y<0,y—1<0,z< 0
1| Y-, -1+b -1) |{xx20y<0y-1<02z<0)
2 ‘-1 1+b, 1) {XIx<0,y>0,y-1<0,z<0}
3| Y- -1-b, -1) |iXx20y>0y-1<0z<0}
4 ‘L 1-b, 1) {XIx<0,y>0,y-1>0,z<0}
5 ‘(1 -1-b, -1 {XIx>0,y>0,y-1>0,z<0}
6 t@L 1+b-a 1) (XIx<0,y<0,y-—1<0,z> 0}
7 t@L ~1+b-a —Q {XIx>0,y<0,y-1<0,z>0}
8 | Y(-1 1-b+a 1) |{Xx<0y20y-1<0z20}
9 IQL ~1-b+a, —g {Xx>0,y>0,y-1<0,z>0}
10| Y(-1, 1-b+a 1) |{Xx<0y=0y-12>02z>0)
11]'(-1, -1-b+a -1) | (xIx20y20y-120,z20)

Table 2: piecewise-linear 2-D maps for

1 (B-Dx+I O-D-x+I1 _ 1
0 o1 b1 L+ T X0
1 2-a-Zp+b-xo—2-ax0—Xo b-zp—2-a-zy+2—2-b-Xp+2-a:Xg
b+1 b+1
O-D-(o+t53) 1 (b-1)-(xo+ ) 1
2 o] T e ] . Xo + =
(b-1)-(xp+ (b-1)-(xg+
(b—1)~(zo—%_xo) . (b—1)~(zo ' h _XO)
3 b—a+l T2 =X~ pan b-atl b—a+1
4 _(—b+a—1)~(zo—_xoz+(b—a—1)<xo+l +Z0—Xo+ _bl_l (—b+a—1)-(20—_x81;(b—a—1)~x0+1 _ _51_1
(cb-1)xo+l 1 _ (cb-D)xp+l 1
S b b ) b X0+ 1p
(b—1)-(Zo—X0)+(—b—-1)-xp+1 VI | 1 _ (b=1)(z0-X0)+(=b-1)-x+1
6 —b+a+1 t =X —b+a+1 —b+a+1 —b+a+1
_ (b+a-1)z+1 1 (=bta-1)z+1 _ _1
/ 51 Tt Xt 33 b1 1
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