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Abstract—Heartbeats are controlled by electrical sig-

nals, which are generated by sinoatrial node cells. The

temporal variation of the signals is described by nonlin-

ear ordinary differential equations, and the Zhang model

is one of the most well-known models of the cardiac pace-

maker cell. However, the model exhibits bistability so

that the model is not adequate for a model of pacemaker

cells. In this paper, we perform bifurcation analysis of

the Zhang model by varying various conductances of ion

channels in order to improve the model suitably. These

results suggest that ion currents which can modify the

model are L-type calcium current, T-type calcium current,

and background sodium current.

1. Introduction

The sinoatrial node is a cardiac pacemaker. The sinoa-

trial node cells periodically generate electrical signals,

and conduct the signals to other cardiac tissues. These

electrical signals are called action potentials, which are

mainly related to ion channels in cell membranes. When

the ion channels open, the specific ions pass through

them. This process changes the membrane potential,

which is a difference of electrical potential between the

inside and outside of cell membrane. However, if the pro-

cess becomes abnormal, it causes heart disease.

The action potential of sinoatrial node cells are de-

scribed by Hodgkin–Huxley-type models [1, 2, 3]. The

Zhang model is composed of the nonlinear ordinary dif-

ferential equations with fifteen variables [2, 3]. In addi-

tion, the model enables us to take account of differences

between center and periphery cells, which compose the

sinoatrial node. Therefore, we can analyze the pacemaker

activities of sinoatrial node cells in detail. However, the

model exhibits bistabilities in the normal condition so that

the model is not adequate for a model of pacemaker cells

[4, 5]. This means that the model cannot simulate the ac-

tion potentials accurately. For example, cardiac cells ac-

tually receive stimuli so that cardiac pacemaker cell mod-

els need to take account of them. In the case of cardiac

cell models which exhibits bistability, generation or anni-

hilation of action potentials is changed by each external

stimulus. Due to this, the model cannot take account of

sudden external stimuli.

In this paper, we focus on single center cell activities

of the one-dimensional(1D)-capable model [3]. This cell

model is commonly used to explore activities of coupled

cells [6, 7]. Many kinds of parameters for the model have

different values from those for isolated cell model. We

investigate the bifurcation structure of the model by vary-

ing conductances of ion channels in order to modify the

model.

2. Zhang model

The Zhang model is a rabbit sinoatrial node cell model

described by the Hodgkin–Huxley-type equation with fif-

teen variables. The variation of membrane potential V
(mV) is described by

dV
dt
= − 1

C
Itotal, (1)

Itotal = INa + ICaL + ICaT + IKr + IKs + Ito + Isus + If

+ IbNa + IbCa + IbK + INaCa + Ip, (2)

where Cm(pF) is the membrane capacitance, INa, ICaL,

ICaT, IKr, IKs, Ito, Isus, If , IbNa, IbCa, IbK, INaCa, Ip (pA) are

the ionic currents. These currents are given by the fol-

lowing equations:

Iion = cionGion f (V, χ)(V − Eion) (3)

(ion=Na, CaL, CaT, Kr, Ks, to, sus, f, bNa, bCa, bK, NaCa, p),

where Gion (μS) is the maximum conductance of ion chan-

nels. For the simplicity of bifurcation analyses, we have

introduced the coefficient of the maximum conductance

cion whose standard value is 1.0. χ is the gating vari-

able, which expresses opening and closing dynamics of

ion channels. Temporal variations of gating variables are

described by

dχ

dt
= αχ(V)(1 − χ) − βχ(V)χ (4)

(χ = m, h1, h2, dL, fL, dT, fT, y, r, q, pa,f , pa,s, pi, xs),

where αχ(V) and βχ(V) are the (voltage-dependent) rate

constants of the transition between open and closed states

of the gate. For more details, see the reference [2, 3]. We

analyzed the center cell model.

- 318 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016



−60

−40

−20

0

20

40

0 2 4 6 8 10 12

V
M

A
X

(m
V

)

cCaL

HB1
/

—HB2
–DC1

DC2–

(a-1)
(a)

−60

−40

−20

0

20

40

0 0.5 0.7 1 1.08 1.5 2

V
M

A
X

(m
V

)
cCaL

HB1
＼

DC1—

(a-2)

−60
−50
−40
−30
−20
−10

0
10
20

3000 3200 3400 3600 3800 4000

V
(m

V
)

t(ms)

(a-3)

−60
−50
−40
−30
−20
−10

0
10
20

3000 3200 3400 3600 3800 4000

V
(m

V
)

t(ms)

(a-4)

−60
−50
−40
−30
−20
−10

0
10
20

3000 3200 3400 3600 3800 4000

V
(m

V
)

t(ms)

(a-5)

−60

−40

−20

0

20

40

−2−1.5−1−0.5 0 0.5 1 1.5 2 2.5

V
M

A
X

(m
V

)

cbNa

—HB4
—HB3

HB2
/

HB1
＼

DC4–
DC3–
DC2

/
DC5

DC1—

(b) (b-1)

−60

−40

−20

0

20

40

−4 −2 0 2 4 6 8

V
M

A
X

(m
V

)

cCaT

HB1
/

HB2
＼

–DC1

DC2–

(c) (c-1)

−60
−50
−40
−30
−20
−10

0
10
20

2600 2800 3000 3200 3400

V
(m

V
)

t(ms)

(b-2)

−60
−50
−40
−30
−20
−10

0
10
20

5600 5800 6000 6200 6400

V
(m

V
)

t(ms)

(c-2)

−60

−40

−20

0

20

40

0 2 4 6 8 10

V
M

A
X

(m
V

)

cKr

—DC
—PD

(d)

−60

−40

−20

0

20

40

60

80

−30−25−20−15−10 −5 0 5 10

V
M

A
X

(m
V

)

cNaCa

HB＼
DC—

—PD

SN1–

SN2—

SN3—

(e)

Figure 1: One-parameter bifurcation diagrams as for

(a-1)cCaL, (a-2)cCaL(the enlarged view of (a-1)), (b-1)cbNa,

(c-1)cCaT, (d)cKr , (e)cNaCa, and results of the simulation

at (a-3)cCaL = 1.00, (a-4)cCaL = 0.70, (a-5)cCaL = 1.08,

(b-2)cbNa = 0.69, (c-2)cCaT = 0.59.

3. One-parameter bifurcation analysis in order to
modify the Zhang model

As discussed in the introduction, the Zhang model ex-

hibits bistabilities. This means that stable equilibrium

points and periodic solutions coexist in normal condi-

tions. Therefore, this model can’t take account of sudden

external stimulus. In this section, we analyze the bifur-

cation structures of the model as for each conductance

coefficient of ionic currents in order to modify the model.

Each ion current plays an important role in action poten-

tial activities of a cardiac cell. The method to analyze bi-

furcations as for a conductance coefficient of a ion current

is useful to investigate the stabilities of equilibrium points

and periodic solutions [8]. This paper uses the bifurcation

analysis software AUTO [9].

3.1. Effective parameters

Stabilities of equilibrium points and periodic solutions

don’t always depend on large ion currents. For example,

hyperpolarization-activated current If has an important ef-

fect upon the automaticity of cardiac pacemaker cells al-

though the maximum value of If is very small. Therefore,

we analyze the model as for all currents even if some of

them are small.

3.1.1. The L-type calcium current ICaL

L-type calcium current ICaL is large current in a center

cell, and plays a main role in the depolarization of action

potential. Figure 1(a-1) shows the bifurcation diagram as

for cCaL. The membrane potential V in the steady state is

plotted for each value of cCaL in the diagram. The solid

and broken curves show stable and unstable solutions, re-

spectively. The thick and thin curves present periodic

solutions and equilibrium points, and HB, SN, PD de-

note the bifurcation points of Hopf, saddle-node, Period-

doubling bifurcation.

When cCaL is increased from 0.00, a equilibrium point

is unstable at HB1 (cCaL = 1.08), and the unstable peri-

odic solutions are generated. Periodic solutions become

stable at DC1 (cCaL = 0.74), and become unstable at DC2

(cCaL = 10.39). Eventually, periodic solutions disappear

at HB2 (cCaL = 10.06), so that stable periodic orbits

coexist with stable equilibrium points within the range

0.74 < cCaL < 1.08, 10.06 < cCaL < 10.39. Therefore,

the Zhang model is suitable as a cardiac pacemaker cell

model in the condition of 1.08 < cCaL < 10.06.

If membrane potentials are abnormal, the change of a

model parameter is not adequate. Therefore, we evalu-

ate the maximum systoilc potential and the period of the

Zhang model based on Fig. 1(a-2). The result of the sim-

ulation in normal conditions is Fig. 1(a-3), and the maxi-

mum systoilc potential is 20.9 mV and the period is 336.3
ms. Furthermore, the membrane potential converges to a

fixed value at cCaL = 0.70 (Fig. 1(a-4)). In this figure, the

solid curve is action potential waveform in the modified

condition, and the broken curve is that in the normal con-

dition. When cCaL is 1.08, the maximum systoilc potential

is 23.1 mV and the period is 338.0 ms (Fig. 1(a-5)). The

maximum value of the action potential needs to be larger

than 0.0 mV, so that the difference of the values is permis-

sible. The difference of periods are also allowable.

3.1.2. The background sodium current IbNa

Unlike ICaL, IbNa is so small that it seems that IbNa

will not affect cardiac pacemaker activities. However,

as can be seen from Fig. 1(b-1), this expectation is not

correct. Stable periodic orbits coexist with stable equi-

librium points within the range −0.56 < cbNa < −0.53,
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−0.36 < cbNa < 0.00, 0.69 < cbNa < 2.09. Accord-

ingly, periodic solutions are monostable when cbNa de-

crease from 1.0.

As cCaL, we compare the differences between the nor-

mal condition and the modified condition. The the maxi-

mum systoilc potential is 20.4 mV and the period is 378.0
ms in the condition of cbNa = 0.69 (Fig. 1(b-2)). The

difference between the values of the maximum systoilc

potential at cbNa = 1.00 and at cbNa = 0.69 is smaller

than cCaL, but the period at cbNa = 0.69 is larger than at

cbNa = 1.00. This means that the heart rate per minute at

cbNa = 0.69 is 20 less than that at cbNa = 1.00, but this

model describes a rabbit sinoatrial node cell activity so

that it may not be a problem. This is the reason why cbNa

is inferior to cCaL to modify the model.

3.1.3. The T-type calcium current ICaT

ICaT is smaller than IbNa, but cCaT is an effective param-

eter to modify the model. Figure 1(c-1) shows that sta-

ble periodic orbits coexist with stable equilibrium points

within the range −4.00 < cCaT < −2.23, 0.58 < cCaT <
4.75. Therefore, the model is suitable as a cardiac pace-

maker cell model in the condition of 0.00 < cCaT < 0.58

(cCaT < 0.00 is physiologically impossible).

When cCaT is 0.58, the maximum systoilc potential

is 20.1 mV and the period is 355.2 ms (Fig. 1(c-2)).

The change of the value of cCaT hardly affects the max-

imum value of action potentials. Thus, compared with

cCaL = 1.08, the maximum value of action potentials

is closer to the value in the normal condition. On the

other hand, the period at cCaT = 0.58 is larger than at

cCaT = 1.00 so that the heart rate per minute at cCaT = 0.58

is 10 less than in the normal condition. The influence on

the period of action potentials by decreasing the value of

cCaT is smaller than that by decreasing the value of cbNa.

Therefore, from a viewpoint of the difference of periods,

the parameter cCaT is more suitable than cbNa, but cCaL is

more appropriate than these.

3.2. Non-effective parameters

In this section, we introduce the parameters which are

not adequate to modify the model. We show two repre-

sentative examples as follows.

3.2.1. The rapid delayed rectifying potassium current IKr

The potassium currents have an effect on repolarization

of the pacemaker activity, and IKr is a larger current than

IKs. However, the model isn’t suitable as a cardiac pace-

maker cell model as cKr is any value. Figure 1(d) shows

that a equilibrium point is stable with any value of cKr

when cKr is increased from 0.00. On the other hand, a sta-

ble periodic solution exists between DC (cKr = 0.48) and

PD (cKr = 4.92). Consequently, changing the value of cKr

can’t improve the model.

3.2.2. The sodium–calcium exchanger current INaCa

INaCa connects with sodium ion and calcium ion move-

ments. As can be seen from Figure 1(e), although equi-

librium points become unstable and periodic solutions be-

come stable by varying the value of cNaCa, this condition

is physiologically impossible. Owing to this, cNaCa is not

suitable to improve the model.

We investigated other conductance coefficients.

However, pacemaker activities are abnormal condi-

tions as a cardiac pacemaker cell model although

cKs, cto, csus, cf , cbK, cp are any value.

4. Interrelation between two conductance coefficients
of ionic currents

In the above section, we analyzed bistabilities of the

Zhang model on each conductance coefficient of ion

channels. This results indicate that cCaL, cbNa, cCaT are

important to modify the model. However, the larger the

value of parameter changes, the greater difference be-

tween the waveform in normal conditions and in modified

conditions becomes. Thus the change of the value needs

to be smaller. For this reason, we explore the adequate

values of parameters to modify the model when two pa-

rameters change.

4.1. The L-type calcium current ICaL and the back-
ground sodium current IbNa

In the previous section, increasing cCaL is to make the

amplitude of membrane potentials larger. Furthermore,

the period of the pacemaker activities become larger be-

cause of decreasing cbNa. Thus, we expect that the shapes

of action potential in modified conditions resemble those

in the normal conditions when cCaL and cbNa are varied si-

multaneously. This section shows the range of parameters

which makes the model adequate. Future work is needed

to evaluate the shapes of membrane potentials.

Figure 2(a) shows the two-parameter bifurcation dia-

grams as for cCaL and cbNa. The shaded area indicate

that the model is adequate as a pacemaker cell model (os-

cillations are stable and equilibrium points are unstable).

When cbNa is increased from 0.00, the range between HB1

and DC1 becomes wider. Accordinigly, the changes of

the value of parameters are smaller to modify this model

when cCaL increases and cbNa decreases from 1.00.

4.2. The L-type calcium current ICaL and the T-type
calcium current ICaT

As can be seen from Fig. 2(b), when cCaT is increased

from 1.00, the range between HB1 and DC1 becomes
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Figure 2: Two-parameter bifurcation diagram as for

(a)cCaL–cbNa, (b)cCaL–cCaT, (c)cbNa–cCaT.

wider. DC1 curve is parallel to the cCaT-axis so that the

change of cCaT hardly affects the contour lines of DC1

within the range 0.00 < cCaT < 2.00. On the other hand,

HB1 curve runs to the upper right of the figure. There-

fore, the range of cCaL between HB1 and DC1 becomes

wider as cCaT is increased.

4.3. The background sodium current IbNa and the T-
type calcium current ICaT

Unlike ICaL, IbNa and ICaT hardly affect the amplitude

of pacemaker activities. Therefore, Fig. 2(c) is also ex-

pected to be useful to modify the model.

Fig. 2(c) shows that HB1, HB2, and DC1 curves run to

the upper left of the figure. This means that the value of

cbNa affect loci of bifurcations much the same as that of

cCaT.

5. Conclusion

In this paper, we analyzed the bifurcation structure of

the Zhang model, which exhibits bistabilities in normal

conditions. As a result, bifurcation structures for the sin-

gle conductance coefficient of ionic currents revealed that

oscillations are stable and equilibrium points are unstable

by varying cCaL, cCaT, or cbNa. Therefore, in this study we

showed that these conductance coefficients are important

for the improvement of the model.

Furthermore, we have examined two-parameter bifur-

cation diagram, where the bifurcation parameters are

cCaL–cbNa, cCaL–cCaT and cbNa–cCaT. These show that

two-parameter bifurcation analysis makes the amounts of

change of the bifurcation parameters smaller than the one-

parameter bifurcation analyses to make the model ade-

quate as a cardiac pacemaker cell model. These two re-

sults are key to the modification of the model.
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