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Abstract—Encoding of given time series data can be baa precise point in time, such as the onset of sound or a task
sis of various information processing and a key to undecue. Signal decomposition using a linear superposition of
standing properties of the dynamical system that generaime-shiftable kernel function [1, 2] works well to extract
the time series. ficient encoding requires to extracts feafeatures of the data and to encode the data into point pro-
tures of the data and decompose the given data with tltess. This approach works well particularly on sound data
features. Features on time series can be represented as@rded as a one-dimensional time series.
set of kernel functions, and a given data can be decom-Most of the above-mentioned time series data are
posed using the kernel functions and sparsification of th@corded with multiple sensors, e.g. electroencephalogram,
representation. This sparse and shiftable kernel meth@gllti-unit recording of spike trains, and imaging data con-
efficiently encodes one-dimensional time series data int@ining many pixels, and microphone array. Even sound
a series of point on time as a point process. Reservaiata recorded as one-dimensional time series are often ana-
computing paradigm provides a strategy to model multiyzed as multi-dimensional time series of the spectrogram.
dimensional time series data with randomly coupled norEach channel of these multi-dimensional time series may
linear elements. Here we propose to combine the shiftabigwe temporal and spatial correlations with each other re-
kernel method and the reservoir computing paradigm. Wgecting the structure of an underlying dynamical system.
use the echo state network, one of implementation of the T key of encoding such multi-dimensional data is to
reservoir computing, and propose that the reservoir consqyce redundancy among the channels. In one viiw, e
puting can be utilized to dynamically organize the kemekient coding theory, the goal of the modeling is to encode
functions and to #iiciently encode multi-dimensional time {he maximal amount of information about the input sig-
series. We demonstrate that a complex multi-dimensiongh py statistically independent features. Current methods
time series data can be encoded into a few points in thge principal component analysis or independent compo-
point process with the proposed method. nent analysis perform this processing with an assumed spa-
tial distributions of the data. However, there is rfatent
coding strategy based on both spatial and temporal feature
of multi-dimensional time series data.

Dynamical system modeling has played a crucial role Reservoir computing is a paradigm of understanding and
in the development of techniques for data processing dfaining recurrent neural networks[3], where neurons are
many research fields. For instance, nonstationary acowparsely and randomly connected. In the reservoir com-
tic structures of timing relations among acoustic events gruting, supervised adaptation of all weight value of recur-
harmonic periodicities provide cues for many types of audient connection is not necessary, and only training a mem-
tory processing, e.g. sound localization and speech recogfyless supervised readout from the dynamical reservoir
nition. Time series data reflecting activities of the brain ofrecurrent network) is enough to obtain flexible and mul-
alocal neural circuit provide information underlying neuralkiple time courses. One form of the reservoir computing
processing and are applicable for brain-machine interfacearadigm is the echo state network[4, 5], which composed
These time series data reflect properties of underlying cornf simple non-linear elements.
plex dynamical system and may include redundancy and Here we propose that the reservoir computing paradigm
exhibit repetition of a certain pattern of time course. Reean be utilized to encoding multi-dimensional time series
ducing the redundancy, extracting features, and encodiagd that kernel functions for extracting features of a given
the data are key to understand the underlying dynamictine series data can be generated with dynamics of the echo
systems and may provide a basis of applications for pattegate network. In this paper, we explain the generative form
recognition, regression, and prediction. of the model and algorithm for the encoding, then show

Temporal features on time series can be characterizedpeceliminary results.

1. Introduction
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2. Methods Input u(n)
Here we use the echo state network [4, 5] and the sparse layer

and shiftable kernel method of signal representation [1, 2].

The basic idea of our approach is to dynamically organize

a set of kernel functions with the echo state network and to )

efficiently represent the correlated multi-dimensional tim&ynamical x(n)

series data with this set of kernel functions. reservoir

2.1. Generative Model with Reservoir Computing

In the proposed model (Figure 1), a giveN,-
dimensional signadi(n) is represented by the output of the Output
dynamical reservoiy(n). State of the dynamical reservoir  layer y(n) Q
x(n) and outputy(n) are updated according to following

equations. .
a Given

time series d(n)
data

X(n+1) = x(n) + g[—aox(n)

. Figure 1: Structure of proposed model
+fx(Wre°x(n) + WPacky(n) + W'”u(n))}, (1)

_ out.
y(n) = f(WEX(m). (2) Amax IS maximum eigenvalue di\,. Finally, scalew; to

rec _ back f; i ~
whereW'¢is N, x N, weight matrices of recurrent connec-W = arWy. ForW»* first, randomly assigrl ~ 1 to

tions on the dynamical reservoly®a* is N, x N, weight BoNy x Ny components oWz with a uniform distribution

matrices of feedback connections from the output layer t?)nd assign 0 to thg other units. Then, nqrmahzc_a the sum of
the dynamical reservoivy/™ is N, x N, weight matrices of columns of thf tm't vectors, multiply with cfiggient ay,

! it toyvbac in ; i
input connections on from the input layer to the dynamif’lnd setitt - W is generated by same manner with

- . diiciente; andg
cal reservoir. We definé,(x) = fy(x) = tanhx. 6 = 1,7 co : ! . out
specifies the time scale of the dynamical reservoir. In the Zecqrr]]d ste_p, oppmal va_lue d f#’ ?Edwb' are f
The dynamical reservoir is driven by the inpufn), computed with a given time series data. The objective o

which is given as an ensemble of a kernel functioiere this optimization is to minimize the error while maximizing
we use Gaussian function as the kew(@) = exp(n?/c2) coding dficiency. Here we use the following equation as

with the width of kernebr, andk th component ofi(n) is the objective function.
represented as follows. Ny Ny
E=) > -dm)y’+a) >y uml @)
i n k n

The first term on the r.h.s of equation is the error and the
‘ - ) second term is a term for enhancing sparseness of the input.
whererf ands¢ are the temporal position and deient of  \ye try to minimizeE by finding optimal list of instances
thei th instance ok th component ofi(n). ny is the number (z¥ and &) with iterations described below. In each it-

U= ), 90— 1), ®)

of instance on thé& th component ofi(n). eration step, find the optimak and s with brute force
_ _ approach, namely adopt{( §) = argmins « E as an in-

. . " .,
Above described equations specify the generative form !N €ach iteration steplv© are computed by driving the
of the model but does not provide an encoding algorithnfnde! with "teacher-focing”, which means that the feed-
The optimal values Ofik, 511< andW° for a given signal are back Qf ou?put statg(n) is replgced Wlth'the teacher signal
necessary to be computed with randomly generstes, ~ (the given inputp(n) as following equations.

Wback, andW‘”.

As to the first step for generating'c, WPak andw™m, x(n+ 1) = x(n) + 0
we follows the procedures in [5]. FOWW'™C, first, randomly T
generateNy x Ny matriXWg by assigning 1 or-1 to ran- e bac o
domly selectegB; Ny x Ny components ofVy and assign +fx(W x(n) + WPd(n) + W U(”))
0 to the others. Then, normalix®¥, to a matrix\W; with
unit spectral radius by putting/; = 1/|AmaWo, where  x(n) andy(n) in time from T, to T, are used to calculate

—aoXx(n)

.(5)
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Weut Align the time series ok(n) into state collecting © o [(nsutiayer (resut of encoding ) uri
matrixM, whereM is (Ty — Tg — 1) x Nx matrix. Then,
input sigmoid-invertedi(n), or tantr* d(n) into G, where b A I A
Gis (T1 — To — 1) x Ny matrix. W is calculated using =
pseudo-inverse dfl as

-1.0 1 1
0 100 200 300

(WOUI)T =M _1G. (6)

(b)

State of dynamical reservoir x(n)

Continue the iteration till thé& does not decrease, and
the set of instances of the input layer is obtained.

3. Results ‘ |

1.0

We demonstrate our methods with an artificially generS [ .cigen data ain
ated multi-dimensional time series (Figure 2). This time
series is generated as an ensemble of spatially and tempo-
rally distributed Gaussian functions & = 20 dimension
of given data (See red curves in Fig. 2(c)).

We use the dynamical reservoir of siky = 100 and
Ny = 5 input layer with following parameter values, = @ s Residual- y(i-d()
02,8 = 01,ap = 02,8, = 01,05 = 1,5 = 01,7 =
256 = 1,0 =5, and 1 = 1.0. For simplicity, we set
s¢ = 1 for this simulation. 10

Figure 2 shows that the given multi-dimensional time
series is encoded with three instances on the input layer, ¢ ‘ o ‘ 250 ‘
which virtually corresponds to three points of marked point !
process (Fig. 2(a)). The input drives the d_ynamit_:al rese igure 2: An example of encoding of multi-dimensional
voir and causes specific pattern of fluctuations (Fig. 2(b) i

. D me series. (a) Input for the dynamical reservoir that is a
This fluctuation is read out to the output layer so that th,?esult of encoding. (b) Responses in the dynamical reser-

gutput Igyer reproduces t:e given ltime serilias datg (F'goir. (c) Given time series data (red curves) and a responses
(). The responses on the output layer well repro UCING the output layer of the network (black curves). (d) Resid-

the given time series data (Fig. 2(d)). | : duced data. | d(d ltipl
The proposed method uses random numbers for gener:..lﬁjlﬁ1 (erron) of reproduced data. In (a), (¢), and (d), multiple

ing weight matrix in the first step of the encoding, and thuﬁca? jﬁgst?oir_e displayed by shifting to position to the ver

the performance of the encoding depend on the realization

of the weight matrix, whereas, the performance is stable for

this specific time series data, and result shown in Fig. 2 is

a typical case. method to real engineering problems, e.g. encoding au-
dio signals, communication, analysis of biomedical data

including applications for brain-machine interfaces.

4., Discussion

Here we propose a new encoding method for multi-
dimensional time series data based on reservoir computi%

and sparse and shiftable kernellm'ethod.. Our 'prelimin.ary The author would like to thank NOLTA2016 organizing
result Sh.OWS that complgx mult|-d|m¢n5|9nal tlmg SENe R o mmittee members for their fruitful suggestions and com-
can be virtually encoded into a few points in the point PrOr ents. This work was supported by JSPS KAKENHI Grant
cess.

The present study may provide insights for understandl\—Iumber 16K00246.
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