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Abstract—Encoding of given time series data can be ba-
sis of various information processing and a key to under-
standing properties of the dynamical system that generate
the time series. Efficient encoding requires to extracts fea-
tures of the data and decompose the given data with the
features. Features on time series can be represented as a
set of kernel functions, and a given data can be decom-
posed using the kernel functions and sparsification of the
representation. This sparse and shiftable kernel method
efficiently encodes one-dimensional time series data into
a series of point on time as a point process. Reservoir
computing paradigm provides a strategy to model multi-
dimensional time series data with randomly coupled non-
linear elements. Here we propose to combine the shiftable
kernel method and the reservoir computing paradigm. We
use the echo state network, one of implementation of the
reservoir computing, and propose that the reservoir com-
puting can be utilized to dynamically organize the kernel
functions and to efficiently encode multi-dimensional time
series. We demonstrate that a complex multi-dimensional
time series data can be encoded into a few points in the
point process with the proposed method.

1. Introduction

Dynamical system modeling has played a crucial role
in the development of techniques for data processing of
many research fields. For instance, nonstationary acous-
tic structures of timing relations among acoustic events or
harmonic periodicities provide cues for many types of audi-
tory processing, e.g. sound localization and speech recog-
nition. Time series data reflecting activities of the brain or
a local neural circuit provide information underlying neural
processing and are applicable for brain-machine interface.
These time series data reflect properties of underlying com-
plex dynamical system and may include redundancy and
exhibit repetition of a certain pattern of time course. Re-
ducing the redundancy, extracting features, and encoding
the data are key to understand the underlying dynamical
systems and may provide a basis of applications for pattern
recognition, regression, and prediction.

Temporal features on time series can be characterized to

a precise point in time, such as the onset of sound or a task
cue. Signal decomposition using a linear superposition of
time-shiftable kernel function [1, 2] works well to extract
features of the data and to encode the data into point pro-
cess. This approach works well particularly on sound data
recorded as a one-dimensional time series.

Most of the above-mentioned time series data are
recorded with multiple sensors, e.g. electroencephalogram,
multi-unit recording of spike trains, and imaging data con-
taining many pixels, and microphone array. Even sound
data recorded as one-dimensional time series are often ana-
lyzed as multi-dimensional time series of the spectrogram.
Each channel of these multi-dimensional time series may
have temporal and spatial correlations with each other re-
flecting the structure of an underlying dynamical system.

The key of encoding such multi-dimensional data is to
reduce redundancy among the channels. In one view, effi-
cient coding theory, the goal of the modeling is to encode
the maximal amount of information about the input sig-
nal by statistically independent features. Current methods
like principal component analysis or independent compo-
nent analysis perform this processing with an assumed spa-
tial distributions of the data. However, there is no efficient
coding strategy based on both spatial and temporal feature
of multi-dimensional time series data.

Reservoir computing is a paradigm of understanding and
training recurrent neural networks[3], where neurons are
sparsely and randomly connected. In the reservoir com-
puting, supervised adaptation of all weight value of recur-
rent connection is not necessary, and only training a mem-
oryless supervised readout from the dynamical reservoir
(recurrent network) is enough to obtain flexible and mul-
tiple time courses. One form of the reservoir computing
paradigm is the echo state network[4, 5], which composed
of simple non-linear elements.

Here we propose that the reservoir computing paradigm
can be utilized to encoding multi-dimensional time series
and that kernel functions for extracting features of a given
time series data can be generated with dynamics of the echo
state network. In this paper, we explain the generative form
of the model and algorithm for the encoding, then show
preliminary results.
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2. Methods

Here we use the echo state network [4, 5] and the sparse
and shiftable kernel method of signal representation [1, 2].
The basic idea of our approach is to dynamically organize
a set of kernel functions with the echo state network and to
efficiently represent the correlated multi-dimensional time
series data with this set of kernel functions.

2.1. Generative Model with Reservoir Computing

In the proposed model (Figure 1), a givenNy-
dimensional signald(n) is represented by the output of the
dynamical reservoiry(n). State of the dynamical reservoir
x(n) and outputy(n) are updated according to following
equations.

x(n+ 1) = x(n) +
δ

τ

−α0x(n)

+fx

(
Wrecx(n) +Wbacky(n) +W inu(n)

), (1)

y(n) = fy(Woutx(n)), (2)

whereWrec is Nx×Nx weight matrices of recurrent connec-
tions on the dynamical reservoir,Wback is Nx × Ny weight
matrices of feedback connections from the output layer to
the dynamical reservoir,W in is Nx × Nu weight matrices of
input connections on from the input layer to the dynami-
cal reservoir. We definefx(x) = fy(x) = tanhx. δ = 1, τ
specifies the time scale of the dynamical reservoir.

The dynamical reservoir is driven by the inputu(n),
which is given as an ensemble of a kernel functionϕ. Here
we use Gaussian function as the kernelϕ(n) = exp(−n2/σ2)
with the width of kernelσ, andk th component ofu(n) is
represented as follows.

uk =

nk∑
i

sk
i ϕ(n− τki ), (3)

whereτki andsk
i are the temporal position and coefficient of

thei th instance ofk th component ofu(n). nk is the number
of instance on thek th component ofu(n).

2.2. Encoding Algorithms

Above described equations specify the generative form
of the model but does not provide an encoding algorithm.
The optimal values ofτki , sk

i , andWout for a given signal are
necessary to be computed with randomly generatedWrec,
Wback, andW in.

As to the first step for generatingWrec, Wback, andW in,
we follows the procedures in [5]. ForWrec, first, randomly
generateNx × Nx matrixW0 by assigning 1 or−1 to ran-
domly selectedβr Nx × Nx components ofW0 and assign
0 to the others. Then, normalizeW0 to a matrixW1 with
unit spectral radius by puttingW1 = 1/|λmax|W0, where

x(n)

y(n)

d(n)

u(n)

Wrec

Win

WbackWout

Input
layer

Output
layer

Given
time series

data

Dynamical
reservoir

Figure 1: Structure of proposed model

λmax is maximum eigenvalue ofW0. Finally, scaleW1 to
Wrec = αrW1. ForWback, first, randomly assign−1 ∼ 1 to
βbNx × Ny components ofW3 with a uniform distribution
and assign 0 to the other units. Then, normalize the sum of
columns of the unit vectors, multiply with coefficientαb,
and set it toWback. W in is generated by same manner with
coefficientαi andβi

In the second step, optimal values ofτki , sk
i , andWout are

computed with a given time series data. The objective of
this optimization is to minimize the error while maximizing
coding efficiency. Here we use the following equation as
the objective function.

E =
Ny∑
i

∑
n

(yi(n) − di(n))2 + λ

Nu∑
k

∑
n

|uk(n)| (4)

The first term on the r.h.s of equation is the error and the
second term is a term for enhancing sparseness of the input.

We try to minimizeE by finding optimal list of instances
(τki and sk

i ) with iterations described below. In each it-
eration step, find the optimalτki and sk

i with brute force
approach, namely adopt (τki , s

k
i ) = arg minτki ,sk

i
E as an in-

stance on the input layer.
In each iteration step,Wout are computed by driving the

model with ”teacher-focing”, which means that the feed-
back of output statey(n) is replaced with the teacher signal
(the given input)d(n) as following equations.

x(n+ 1) = x(n) +
δ

τ

−α0x(n)

+fx

(
Wrecx(n) +Wbackd(n) +W inu(n)

). (5)

x(n) andy(n) in time from T0 to T1 are used to calculate
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Wout. Align the time series ofx(n) into state collecting
matrixM, whereM is (T1 − T0 − 1) × Nx matrix. Then,
input sigmoid-invertedd(n), or tanh−1 d(n) into G, where
G is (T1 − T0 − 1) × Ny matrix. Wout is calculated using
pseudo-inverse ofM as

(Wout)T = M−1G. (6)

Continue the iteration till theE does not decrease, and
the set of instances of the input layer is obtained.

3. Results

We demonstrate our methods with an artificially gener-
ated multi-dimensional time series (Figure 2). This time
series is generated as an ensemble of spatially and tempo-
rally distributed Gaussian functions onNy = 20 dimension
of given data (See red curves in Fig. 2(c)).

We use the dynamical reservoir of sizeNx = 100 and
Nu = 5 input layer with following parameter values.αr =

0.2, βr = 0.1, αb = 0.2, βb = 0.1, αi = 1, βi = 0.1, τ =
2.5, δ = 1, σ = 5, and λ = 1.0. For simplicity, we set
sk

i = 1 for this simulation.
Figure 2 shows that the given multi-dimensional time

series is encoded with three instances on the input layer,
which virtually corresponds to three points of marked point
process (Fig. 2(a)). The input drives the dynamical reser-
voir and causes specific pattern of fluctuations (Fig. 2(b)).
This fluctuation is read out to the output layer so that the
output layer reproduces the given time series data (Fig.
2(c)). The responses on the output layer well reproducing
the given time series data (Fig. 2(d)).

The proposed method uses random numbers for generat-
ing weight matrix in the first step of the encoding, and thus
the performance of the encoding depend on the realization
of the weight matrix, whereas, the performance is stable for
this specific time series data, and result shown in Fig. 2 is
a typical case.

4. Discussion

Here we propose a new encoding method for multi-
dimensional time series data based on reservoir computing
and sparse and shiftable kernel method. Our preliminary
result shows that complex multi-dimensional time series
can be virtually encoded into a few points in the point pro-
cess.

The present study may provide insights for understand-
ing efficient coding mechanisms of biological systems, i.e.
auditory system, particularly, the higher order representa-
tion of auditory coding and animal vocalizations.

In the future, we should evaluate details of the proposed
method, namely, the dependency of the performances on
the many parameters and network structure. To apply this
method to large-scale and realistic problem, more efficient
ways of configuring connection matrix and encoding algo-
rithms are necessary. Furthermore, we should apply this
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Figure 2: An example of encoding of multi-dimensional
time series. (a) Input for the dynamical reservoir that is a
result of encoding. (b) Responses in the dynamical reser-
voir. (c) Given time series data (red curves) and a responses
of the output layer of the network (black curves). (d) Resid-
ual (error) of reproduced data. In (a), (c), and (d), multiple
time series are displayed by shifting to position to the ver-
tical direction.

method to real engineering problems, e.g. encoding au-
dio signals, communication, analysis of biomedical data
including applications for brain-machine interfaces.
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