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Abstract—Given an undirected weighted graph G =

(V, E, c) and a set T ∈ V , where V is the set of vertices, E
is the set of edges, c is the cost function, and T is the sub-
set of terminal vertices, the Steiner tree is a subgraph that
doesn’t have a loop and connects all terminals. The Steiner
tree problem in graphs is to find the minimum cost Steiner
tree. The Steiner tree problem is one of the NP-complete
combinatorial optimization problems. Thus, approximate
methods are usually employed for constructing the Steiner
tree. In this study, the KMB algorithm, which is an ef-
ficient construction method for the Steiner tree problem,
is enhanced by considering betweenness centrality. Re-
sults of numerical simulations indicate that our improved
KMB algorithm shows good performance for the bench-
mark Steiner tree problems.

1. Introduction

Given an undirected weighted graph G = (V, E, c) and a
set of T ∈ V , where V is the set of vertices, E is the set of
edges, c is a non-negative cost function, and T is a subset of
terminal vertices, a subgraph that doesn’t have a loop and
connects all terminals is called a Steiner tree. A cost of the
Steiner tree is the sum of the edge costs included in the tree.
The Steiner tree problem in graphs is to find the minimum
cost Steiner tree. Figure 1 shows examples of the Steiner
tree. In Fig. 1, circles express vertices and lines express
edges. Black circles express terminal vertices and black
lines express the edges in the Steiner tree. A network has
many Steiner trees. Among them, Fig. 1(c) is the minimum
cost Steiner tree for the given network.

(a) Cost:13 (b) Cost:14 (c) Cost:10

Figure 1: Examples of the Steiner tree

The Steiner tree problem is applied to various real-
world problems, such as VLSI routing[1], wirelength
estimation[2], and network routing[3]. Because the Steiner
tree problem is one of the NP-complete combinatorial
optimization problems[4], the approximation method is
usually used to obtain the Steiner tree. Most popular
method to obtain the near-optimum Steiner tree is the KMB
algorithm[5]. The KMB algorithm constructs the Steiner
tree based on the shortest path between terminals and the
minimum spanning tree of all the terminals. The calcula-
tion cost of the KMB algorithm becomes O(|V |2) where |V |
is the number of vertices. The KMB algorithm can obtain
small cost Steiner tree in short time. However, if there are
some shortest paths between the terminals, an obtained cost
of the Steiner tree changes depending on the selected paths.

From this view point, we propose a construction method
of the Steiner tree using the betweenness centrality in this
study. The cost of the Steiner tree obtained by the KMB al-
gorithm using given edge cost is compared with the one us-
ing the betweenness centrality of nodes and edges. Results
of numerical simulations indicate that our propose method
can obtain the small cost Steiner tree.

2. Steiner tree problem

If the number of terminals |T | becomes 2, the Steiner tree
problem changes the shortest path problem. In addition, in
the case by |T | = |V |, the Steiner tree problem becomes
minimum spanning tree problem. On the other hand, in the
case by 2 < |T | < |V |, finding minimum cost tree becomes
the Steiner tree problem.

To mathematically model this problem, we first define a
decision variable, x(ei), that is defined as follows:

x(ei) =
{

1 (ei ∈ ES T ),
0 (otherwise), (1)

where ei is the ith edge in the network, ES T is the set of
edges included in a Steiner tree. By using the decision vari-
ables, an objective function for the Steiner tree problem in
graphs is then defined as follows:

min
|E|∑
i=1

c(ei)x(ei), (2)
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where |E| is the total number of edges, c(ei) is a cost of
the ith edge. If the ith edge, ei, is included in the Steiner
tree, a corresponding decision variable takes 1, and the cost
of the edge ei is added to the total cost of the Steiner tree.
In other words, the Steiner tree problem is to find the best
combination of x(ei).

3. KMB algorithm

In this study, we use the KMB algorithm[5] to construct
the Steiner tree. The KMB algorithm is one of the efficient
approximation algorithms for the Steiner tree problems. To
obtain the Steiner tree using the KMB algorithm, we first
construct a complete graph G1 = (T1, E1, c1) from G and T
(Fig. 2(b)). In the complete graph G1, all the vertices are
terminals. The cost of the edges in G1 corresponds to the
cost of the shortest path between these terminals. Next, we
construct a minimum spanning tree Tree1 from the com-
plete graph G1 (Fig. 2(c)). Finally, edges used in the Tree1
are replaced by the shortest paths connecting to the corre-
sponding vertices in original graph (Fig. 2(d)). An example
Steiner tree using the KMB algorithm is shown in Fig. 2.

(a) A Given network (b) A complete graph G1

(c) A minimum spanning
tree Tree1

(d) A Steiner tree

Figure 2: An example Steiner tree using the KMB algo-
rithm

4. KMB algorithm using betweenness centrality

In the KMB algorithm, if there are some shortest paths
that have the same cost connecting to two vertices, the cost
of the obtained Steiner tree changes depending on the se-
lected paths (Fig. 3). The cost of the obtained Steiner tree
might be longer if an undesirable path is selected. Thus,
it is important to select better shortest paths which various
shortest paths go through as much as possible.

From this view point, we use the network centrality for
constructing the shorter Steiner tree. Although various
types of network centrality have already been proposed,
we employ the betweenness centrality[6, 7, 8] in this study.

Figure 3: A poor point of the KMB algorithm

The betweenness centrality expresses how many times a
vertex appears on every shortest path in the graph. We
modify the cost of link to combine the original cost and
the betweenness cost.

The betweenness centrality of a vertex v is defined as
follows:

bc(v) =

|V |∑
s=1

|V |−1∑
g=1,g,s

Pv(s,g)

P(s,g)

(|V | − 1)(|V | − 2)/2
, (3)

where s is a start vertex and g is a goal vertex of the short-
est path, |V | is the number of vertices, P(s,g) is the number
of shortest paths between s and g, Pv(s,g) is the number of
shortest paths between s and g that goes through the vertex
v.

If a vertex has high betweenness centrality, the vertex
frequently lies on the shortest path. By selecting the path
includes the high betweenness vertices, the cost of the ob-
tained Steiner tree may become small.

To use the betweenness centrality of vertices to edges,
the betweenness cost of the edge(vi, v j), eb(vi, v j), is de-
fined as follows:

eb(vi, v j) =
bc(vi) + bc(v j)

2
, (4)

where vi is the ith vertex, v j is the jth vertex, bc(v) is the
betweenness centrality of the vertex v.

We then define a new cost of edge by considering the
given edge cost and the betweenness cost as follows:

cnew(ei) = αc(ei) + (1 − α)
1

bc(ei)
, (5)

where c(ei) is the normalized given edge cost of the ith
edge, bc(ei) is the normalized betweenness cost of the ith
edge, α is a controlling parameter which determines the
priority between the given edge cost and the betweenness
cost. Although the betweenness centrality is usually calcu-
lated by using the all the shortest paths in the graph, ver-
tices placed at the outside from every terminal are not nec-
essary to include the Steiner tree. We then limit the area of
the graph for calculating the betweenness centrality in this
study. Figure 4 illustrates the given network and the ver-
tices for calculating the betweenness centrality(inside the
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Table 1: Result of numerical simulations
KMB algorithm KMB algorithm using Betweenness centrality

Betweenness centrality Limited betweenness centrality
Name Opt Min Max Mid α Min Max Mid α Min Max Mid

dmxa0296 344 374 387 374 0.6 364 364 364 0.1 352 352 352
dmxa0368 1017 1036 1046 1046 0.1 1031 1031 1031 0.1 1031 1031 1031
dmxa0454 914 991 1009 1004 0.1 958 958 958 0.1 953 953 953
dmxa0628 275 297 297 297 0.2 277 277 277 0.1 297 297 297
dmxa0734 506 537 541 537 0.2 537 537 537 0.1 537 537 537
dmxa0848 594 637 657 644 0.1 632 632 632 0.1 632 632 632
dmxa0903 580 639 660 660 0.3 645 645 645 0.1 632 632 632
dmxa1010 1488 1538 1561 1551 0.1 1546 1546 1546 0.1 1546 1546 1546
dmxa1109 454 473 498 483 0.2 473 473 473 0.1 468 468 468
dmxa1200 750 821 834 821 0.1 769 769 769 0.1 773 773 773
dmxa1304 311 329 334 334 0.1 316 316 316 0.1 316 316 316
dmxa1516 508 513 533 523 0.3 528 528 528 0.1 528 528 528
dmxa1721 780 825 840 830 0.2 794 794 794 0.1 794 794 794
dmxa1801 1365 1484 1540 1530 0.4 1479 1479 1479 0.1 1466 1466 1466

black square). In Fig. 4, black circles express the termi-
nal vertices. Here, Vlim is the set of vertices in the limited
area, and Elim is the set of edges connected to two vertices
in Vlim. We call the betweenness centrality calculated us-
ing the limited graph Glim = (Vlim, Elim, c) as a limited be-
tweenness centrality.

Figure 4: A limited graph

5. Numerical experiments

To compare the performance of the conventional KMB
algorithm with our proposed method, we used the bench-
mark problems provided in SteinLib[9]. The value of the
controlling parameter α in our proposed method is set to the
optimal value by the preliminary experiments. A source
vertex of the Steiner tree is randomly selected among the
terminals.

Table 1 shows the cost of the obtained Steiner trees by
the conventional KMB algorithm and the proposed method
for the test sets DMXA in SteinLib[9]. From the results,
our proposed method obtained the shorter Steiner tree than

the conventional KMB algorithm. In addition, the method
using betweenness centrality and that by limited between-
ness centrality show similar performance. However, the
limited betweenness centrality has less calculation cost
than the original betweenness centrality. Thus, we can say
that the method using the limited betweenness centrality
is better constructing method than that by the original be-
tweenness centrality.

Figure 5 shows the performance of our propose method
for various α cases. In Fig. 5, the constructing method
by the limited betweenness centrality shows good perfor-
mance almost the α cases. This is because the edges in the
outside of limited area are removed.
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Figure 5: An error rate of our propose method for various
α cases (using dmxa1200)

Figure 6 shows the topologies of Steiner tree obtained by
the conventional method and our propose method. Black
circles denote the terminals and black lines denote edges in
the Steiner tree. In Fig. 6, these Steiner trees have different
topologies.
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Figure 6: Steiner trees of dmxa1200 obtained by the con-
ventional and propose methods

6. Conclusions

In this study, we try to change the edge cost by using
the betweenness centrality for constructing the small cost
Steiner tree. We evaluated the performance of our propose
method by the testsets in the SteinLib. From the results
of numerical simulations, the propose method obtains the
small cost Steiner tree stably in comparison to the con-
ventional KMB algorithm. The conventional KMB algo-
rithm often finds larger cost Steiner tree if there are some
shortest paths between the nodes. By selecting the shortest
path which has high betweenness centrality, the cost of the
Steiner tree becomes small. In addition, although the calcu-
lation cost of the betweenness centrality becomes large as
the size of network increases, we can solve this undesirable
problem by using the limited betweenness centrality.

The performance of the KMB algorithm can be enhanced
by selecting the shortest paths between the terminals which
various shortest paths commonly use. Because our propose
method changed the costs of edges to improve the perfor-
mance of the KMB algorithm, obtaining the smallest cost
path by using the original edge cost is impossible. If we

employ the edge which has original edge cost and high be-
tweenness centrality, the cost of the obtained Steiner tree
might become small. In the future work, we try to evaluate
our method by the network whose links have original cost
and high betweenness centrality to construct the small cost
Steiner tree.
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