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Abstract—How simplify modeling properties are criti-
cal for results of the simulations. In neural network simula-
tion, post-synaptic potentials are often modeled with Dirac
delta function to reduce calculation costs. To investigate
the effect of PSP modeling on resultant rhythmic activi-
ties of neural networks, we constructed two types of neural
networks, class 1 and class 2 excitatory neurons, and it is
developed with STDP learning rule. As a result, the sta-
ble rhythms were generated only in the case of the PSP
modeling with delta functions. On other modeling cases,
exponential and alpha functions, the rhythms were disap-
peared after the sufficient long learning periods. Therefore,
using simplified PSP modeling should accompany careful
handling to avoid erroneous simulation results.

1. Introduction

Neurons consists networks and are connected with each
other via synapses. The synapses release neurotransmitters
reacting to arrivals of action potentials. The neurotrans-
mitters trigger post-synaptic potentials (PSP). The PSPs is
modeled with alpha functions in realistic simulations. For
simplicity, the PSP often modeled with exponential func-
tion. In most simplest cases, the Dirac delta function is
used.

Ensemble activities of neurons, for instance, syn-
chronous firing, cell-assembly formation, and rhythms of
the network, are receiving great attention. They are seemed
to play significant roles in the neural signal processing. We
have reported a possible emergent mechanism of the neural
synchrony [9]. In this paper, we rather focus on the rhyth-
mic activities of neural networks.

The rhythmic activities are observed in the whole
brain [12, 13, 14]. The categorization of the brain rhythms
are based on their frequencies [2]: delta (1.5 ∼ 4 [Hz]),
theta (4 ∼ 8 [Hz]), alpha (10 ∼ 30 [Hz]), low gamma
(30 ∼ 80 [Hz]), and high gamma (80 ∼ 200 [Hz]). In the
hippocampus, the theta rhythms have a prominent role in
coding of the animal’s position nesting high frequency os-
cillations [14]. In visual cortex, the gamma rhythms are re-
lated to the attention [5]. In motor cortex, the beta rhythms
are dominant and increse during motor preparation [4].

Izhikevich demonstrated that a plastic spiking neural net-
work can generate the delta and the gamma rhythms [11].
The neural network composed of 800 regularly spiking
neurons for excitatory neurons and 200 fast spiking neu-

rons for inhibitory neurons, and the neural network de-
velops with STDP learning. In this work, the PSPs were
modeled with the delta function. However, the alternative
choice of PSP modeling function might lead to different
consequences. Thus, we studied the effects of the PSP
modeling on the rhythmic activities.

In mammalian neocortex, six fundamental classes of fir-
ing patters are observed [3, 6, 7]: regularly spiking neu-
rons; intrinsically bursting neurons; chattering neurons;
fast spiking interneurons; low-threshold spiking neurons;
and late spiking neurons. Among them, the regularly spik-
ing neuron is most major neuron. Hodgkin stimulated the
regularly spiking neurons by a constant current and ob-
served its firing frequency [8]. By its excitability, he classi-
fied the regularly spiking neurons into two sub-categories:
class 1 and class 2. The class 1 neurons start to fire with
a low frequency through a critical point of firing. In con-
trast, the class 2 neurons start to fire with a high frequency
that remains relatively constant even though the magnitude
of the injected current increases. The class 1 and the class
2 excitabilities are realized by different bifurcation struc-
tures [15]: the class 1 excitability occurs when a neuron
exhibits a saddle-node bifurcation; the class 2 excitability
occurs when a neuron exhibits a Hopf bifurcation.

We constructed two types of neural networks with the
class 1, the class 2 for excitatory neurons, and stimu-
late them by random inputs. The neurons are connected
through chemical synapses, and the connection strength of
synapses are dynamically changed depending on the activ-
ities of neurons. The dynamic change of synaptic connec-
tion is called Spike-Timing-Dependent synaptic Plasticity
(STDP) [1]. To test if the choice of the PSP modeling sig-
nificant effect on resultant rhythmic activities, the PSP of
the class 1 or class 2 networks are modeled in delta, ex-
ponential or alpha functions. The results were compared
in rater plots, power spectra, and the distributions of the
plastic synaptic weights.

2. Methods

2.1. Post-synaptic potential

The PSPs were modeled in three ways: Direc delta func-
tion, exponential function, and alpha function.
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2.2. Neural network

In this paper, we used a neuron model proposed by
Izhikevich [10] that is described as follows:{

v̇ = 0.04v2 + 5v + 140 − u + I(t), (1)
u̇ = a(bv − u), (2)

with an auxiliary after-spike resetting condition:

if v = 30[mV], then { v ← cu← u + d. (3)

where v and u are dimensionless variables, a, b, c and d are
dimensionless parameters, and ˙ represents d/dt, where t is
the time ([ms]). The variable v represents membrane po-
tential ([mV]) of the neuron and u represents a membrane
recovery variable, which accounts for the activation of K+

ionic currents and inactivation of Na+ ionic currents, and it
provides a negative feedback to v.

We constructed neural networks in the following way.
Each network is composed of 1,000 neurons, and 80% (or
20%) of the model neurons are excitatory (or inhibitory) as
in the cortex. The first neural network has the class 1 exci-
tatory neurons. The second neural network has the class 2
excitatory neurons. Properties of the inhibitory neurons are
common for both networks. Excitable property of the in-
hibitory neuron is the class 2 and its time constant is much
faster than the excitatory neurons as in the cortex.

We applied an STDP rule (details are described below)
only to excitatory-to-excitatory connections while the other
connections are fixed. Each neuron connected with only
100 other neurons. For simplicity, the time is assumed to
be discrete (the time step is 1[ms]). Then, the dynamics of
the neural networks develops as follows:

v


j(t + 1) = v j(t) + 0.04v2

j (t) + 5v j + 140 − u j(t) + I j(t)

+

N∑
i=1

wi jh(vi(t − di j) − 30), (4)

u j(t + 1) = u j(t) + a j(b jv j(t) − u j(t) + e j), (5)

with the auxiliary after-spike resetting

if v j(t) = 30[mV], then { v j (t)← c ju j(t)← u j + d j. (6)

where v j(t) is membrane potential of the j-th neuron; u j(t)
is a recovery variable of the j-th neuron, and a j, b j, c j, d j

and e j are dimensionless parameters; e j was introduced to
regulate a firing rate of the neural network; For the class
1 excitatory neurons, a j = 0.02, b j = −0.1, c j = −65.0,
d j = 8.0 and e j = −22. For the class 2 excitatory neurons,
a j = 0.02, b j = 0.26, c j = −65.0, d j = 8.0 and e j = 2. For
inhibitory neurons, a j = 0.1, b j = 0.2, c j = −65.0 d j = 2.0
and e j = 0. wi j is a synaptic connection from the i-th neu-
ron to the j-th neuron. The synaptic weights from excita-
tory neurons are initially set to 6.0. The synaptic weights
from inhibitory neurons are set to −5.0. If the i-th neu-
ron and the j-th neuron are not connected, wi j = 0. Self

connection (wii) is also 0. h(·) is the PSP function (delta,
exponential, or alpha functions). di j is a synaptic transmis-
sion delay. The delay is decided randomly between 1 ∼ 20
[ms]. I j(t)(=0 or 20) represents the external input for the j-
th neuron, and I j(t) follows a Poisson-process whose mean
ISI is 1000 [ms].

2.3. STDP learning rule

Several experimental studies have reported window
functions of the STDP learning (see e.g., Ref.[1]). In this
paper, we used a typical function (Fig.??) [16]. The amount
of synaptic weight modification (∆w) decreases exponen-
tially with a temporal difference (∆t) between the arrival
time of a pre-synaptic action potential. and the occurrence
the of its corresponding post-synaptic action potential:

∆t = tpre + dpre,post − tpost (7)

where tpre is spike time of a pre-synaptic neuron, tpost is
spike time of a post-synaptic neuron, and dpre,post is a delay
time of spike transmission from the pre-synaptic neuron to
the post-synaptic neuron. Then, synaptic modification ∆w
is described by the following equation,

∆w(∆t) = { Ape
∆t
τp (∆t < 0), − Ade−

∆t
τd (∆t ≥ 0), (8)

where Ap and Ad are the maximum rate of modifica-
tion (Ap = 0.1, Ad = 0.12), τp and τd are the time constants
for potentiation and depression, respectively (τp = τd = 20
[ms]). We assumed that the synaptic efficacy is limited in
the range of 0 ≤ wi j ≤ 10, because the STDP learning
rule leads to further synaptic potentiation or depression to
infinitely large or small synaptic weights.

3. Results

We first conducted the simulation with PSP modeling by
the delta functions. Figure 1 shows raster plots of network
activities. Dots on each raster plot indicate a firing of a
neuron. In each raster plot, indices from 1 to 800 in ver-
tical axis indicate the excitatory neurons, and the rests the
inhibitory neurons. At the beginning of the simulations (in
Fig.1, A), both the class 1 and the class 2 networks show
slow rhythmic activities. These frequencies are 4 ∼ 8 [Hz].
The slow rhythms correspond to the theta rhythm (4 ∼ 8
[Hz]) that is often observed in hippocampus [14]. With
time evolution, neurons become to fire in faster rhythms.
The rhythm of the class 1 neural network settles down in
beta frequency bands (Fig.1 B). The power spectrum of the
rhythm is shown in Fig.1 C. The plastic synaptic weights
are mostly biased to the lower bound (Fig.1 F). In contrast,
the class 2 neural network generates the rhythms in high
frequency bands at the end of the simulations (Fig.1 F). The
frequency of the fast rhythm on the class 2 network corre-
sponds to the gamma rhythm (30 ∼ 80 [Hz], Fig.1 F). As
the same with class 1 neural network, the plastic synaptic
weights are biased to the lower bound (Fig.1 H).
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Figure 1: Oscillatory activities of (A-D) class 1 and (E-H) class 2neural networks with delta EPSP. (A-B) Raster plots
at (A) 1st and (B) 60th seconds. (C) Power spectrum of oscillatory activities at 60th second. (E) The distribution of the
plastic synaptic weights at 60th second. (E-H) The same as (A-D) but for class 2 neural networks.
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Figure 2: The same as Fig.1 but for exponential EPSP.
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Figure 3: The same as Fig.1 but for alpha EPSP.
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We then conducted the simulation with PSP modeling by
the exponential functions (Fig.2). At the beginning of the
simulations (Fig.2, A and E), both the class 1 and class 2
networks showed faster oscillations than delta-shaped PSP
function cases. With time evolution, neurons become to
less fire. Eventually, both class 1 and 2 networks become
asynchrous (Fig.2 B and F). We did not observe clear peaks
in power spectra (Fig.2 C and G). The plastic synaptic
weights are biased to the lower bound (Fig.2 D and H).

We finally conducted the simulation with PSP modeling
by the alpha functions (Fig.3). At the beginning of the sim-
ulations (Fig.3, A and E), both the class 1 and class 2 net-
works showed slow oscillations like in delta-shaped PSP
modeling case. However, the synchrony diminished soon,
and kept asynchrous (Fig.3 B and F). We did not observe
clear peaks in the power spectra (Fig.3 C and G). The plas-
tic synaptic weights are biased to the lower bound (Fig.3 D
and H).

4. Discussion

We constructed two neural networks, class 1 and class
2 excitatory neurons, and investigated the effect of PSP
modeling on rhythmic activities. As a result, the rhythms
are stable only for the delta PSP modeling. On the other
modeling cases, the rhythms were gone after the sufficient
learning.

The simple modeling is often employed in simulations,
to achieve faster simulations and reduces calculation costs.
Our results warn to careless use of PSP modeling. The
choice of modeling functions have significant effect on the
consequences. Namely, the stable rhythms were observed
only in delta-function PSP modeling. For realistic simu-
lations, the alpha function should be the first choice for
the PSP modeling. To use more simplified PSP model-
ing should accompany careful handling to avoid erroneous
simulations.

References

[1] G. Bi and M. Poo. Synapic modificaion in cultured
hippocampal neurons: dependence on spike timing,
synaptic strength, and postsynaptic cell type. Journal
of Neuroscience, 18:10464–10472, 1998.
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