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Abstract—A public-key cryptosystem based on Cheby-
shev polynomials has been recently proposed. In this pa-
per, we give conditions on the degree of Chebyshev poly-
nomials to be permutation polynomials modulo a prime
power. We also derive the period of sequences generated
by Chebyshev polynomials modulo a prime power.

1. Introduction

A polynomial over a finite ring is called a permutation
polynomial if the mapping defined by the polynomial is
one-to-one. Permutation polynomials have been used in
cryptography, coding, and pseudorandom number genera-
tion. Rivest has shown a necessary and sufficient condition
on coefficients of polynomials to be a permutation poly-
nomial over a ring of integers modulo a power of two [1].
Umeno proved that Chebyshev polynomials of odd degree
become permutation polynomials over the ring [2].

Taking advantage of the commutative property of
Chebyshev polynomials in real field, a public key cryp-
tosystem based on Chebyshev polynomials was firstly pro-
posed [3], but soon broken [4]. In order to resist such
attack, the definition of Chebyshev polynomials was ex-
panded from real field to finite fields or finite rings [2],
[5]. To analyze the security of the cryptosystem, several
properties of sequences generated by iterating Chebyshev
polynomials over a finite set (called Chebyshev polynomial
sequences in the following discussions) have been inves-
tigated [6]–[10]. Indeed, it turns out that the cryptosys-
tem employing Chebyshev polynomials over the integer
ring of powers of two, even if efficient and practical, is
unfortunately not secure [10]. The weakness of this al-
gorithm is that Chebyshev polynomial sequences over the
ring have regular periodicities. Therefore, it is important
to clarify periodic properties of Chebyshev polynomials se-
quences for applications of cryptography and sequence de-
sign. However, the periodicities of Chebyshev polynomials
modulo powers of odd prime have not been investigated so
far, which is this paper’s concern.

This paper firstly gives a necessary and sufficient condi-
tion on degree of Chebyshev polynomials to be a permu-
tation polynomial over the ring of integers of powers of
prime. We also derive a periodicity of Chebyshev polyno-
mial sequences over the ring.

2. Chebyshev polynomial sequences modulo pk

In this section, after we briefly give the definition and
introduce some properties of Chebyshev polynomials, our
new results will be presented.

2.1. Chebyshev polynomials modulo pk

The Chebyshev polynomials of the first kind of degree n
are defined by the recurrence relation

Tn(x) = 2xTn−1(x) − Tn−2(x), n = 2, 3, · · · , (1)

where T0(x) = 1 and T1(x) = x. The first few Chebyshev
polynomials are T2(x) = 2x2−1, T3(x) = 4x3−3x, T4(x) =
8x4 − 8x2 + 1.

One of the most important properties of Chebyshev poly-
nomials is the semi-group property, that is, the composition
of Chebyshev polynomials is also Chebyshev polynomials.
In particular,

Tn
(
Tm(x)

)
= Tm

(
Tn(x)

)
= Tmn(x). (2)

The commutative property allows us the construction of
public-key cryptosystems. Up to linear transformations,
the monomial xn that appears in the Diffie-Hellman key
agreement protocol and the Chebyshev polynomials are the
only classes of polynomials that satisfy the commutative
property. Thus, the cryptosystems employing Chebyshev
polynomials have been proposed by replacing xn with Tn(x)
[2],[3].

Let Z be the set of all integers and p be a prime num-
ber. For a positive integer k ≥ 1, we consider Chebyshev
polynomials over the residue ring of integers R = Z/pkZ.
Namely,

y = Tn(x) mod pk. (3)

A polynomial f (x) with integer coefficients is said to be a
permutation polynomial over a finite ring R if the mapping
R → R defined by f is one-to-one. Many cryptographic
algorithms use permutation polynomials such as RSA and
RC6 block ciphers. Umeno has proven that for any odd n,
Tn is a permutation polynomial over the integer ring R =
Z/2kZ. Here we consider the case of R = Z/pkZ, where p
is any odd prime.
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We introduce the Dickson polynomial Dn(x, a) of degree
n which is defined by

Dn(x, a) =
bn/2c∑
m=0

n
n − m n−mCm(−a)mxn−2m, (4)

where b·c denotes greatest integer function. The first few
Dickson polynomials are D0(x, a) = 2, D1(x, a) = x,
D2(x, a) = x2−2a, D3(x, a) = x3−3xa, and so on. Dn(x, a)
over the ring R = Z/pkZ is a permutation polynomial if and
only if the degree n is relatively prime to both p and p2 −1,
where a is a unit over the ring R [11].

Dickson polynomials Dn(x, a) are related to Chebyshev
polynomials Tn(x):

Dn(2x, 1) = 2Tn(x). (5)

Lemma 1 Assume a and p are relatively prime. If a f (x)
is a permutation polynomial over R = Z/pkZ, then f (x) is
also a permutation polynomial over R.

Proof: Suppose that f (x) is not a permutation polynomial
over R, then there are some integers x and y such that f (x) ≡
f (y) mod pk, which implies a f (x) ≡ a f (y) mod pk. This
contradicts the fact that a f (x) is a permutation polynomial
over R. �

Since 2x is a permutation polynomial over R, Dn(2x, 1)
is also a permutation polynomial over R. Together with
Lemma 1, we obtain the following result.

Theorem 1 Let p be an odd prime and k > 1 be an positive
integer. A Chebyshev polynomial Tn(x) is a permutation
polynomial modulo pk, if and only if (n, p) = (n, p2−1) = 1,
where (a, b) denotes the greatest common divisor of two
integers a and b.

For example, when p = 3, Tn(x) is a permutation poly-
nomial modulo 3k for any odd n which is not multiples of
three. Thus, we always assume that n is an integer such that
(n, p) = (n, p2 − 1) = 1 hereafter.

The i-th iterate of Tn(x) is denoted by

T i
n(x) = Tn(T i−1

n (x)) mod pk. (6)

We can generate an integer periodic sequence by iterating
(6) from an initial value x. The period N is defined as the
least positive integer such that

T N
n (x) ≡ x mod pk. (7)

We now present examples. We can compute the se-
quence {T i

n(x) mod pk}N−1
i=0 until the period N is discovered.

For example, when p = 5, n = 7, k = 4, and x = 4, the
sequence is

4, 569, 129, 444, 254, 319, 379, 194, 504, 69

the period of which is 10.
Since determining the period is a fundamental prob-

lem for engineering applications such as cryptography and
pseudorandom numbers, it is important to know the period
instead of calculating x, Tn(x) mod pk, T 2

n (x) mod pk, · · ·
until T N

n (x) ≡ x mod pk, which requires at most pk times
calculations of Tn(X) mod pk. We study this in the follow-
ing section.

2.2. The period of Chebyshev polynomial sequences
modulo pk

When R = Z/2kZ, we have already shown an inter-
esting property of Chebyshev polynomial sequences: the
period of {T i

n(x) mod 2k}N−1
i=0 is twice as long as that of

{T i
n(x) mod 2k−1}N−1

i=0 [9]. Therefore, it is expected that
the period of {T i

n(x) mod pk}N−1
i=0 is p times as long as

that of {T i
n(x) mod pk−1}N−1

i=0 for any odd prime p. How-
ever, this is not always true unlike the case of even prime,
which is shown by numerical examples. The periods N of
Tn(x) mod pk for x = 2, 3, 4, 5, 6 are shown in Tables 1, 2,
and 3, where 〈p, n〉 = 〈3, 5〉, 〈5, 7〉 and 〈7, 5〉, respectively.
For example, such periodic property does not hold when
x = 3, 6 and k = 2 in the case of 〈p, n〉 = 〈3, 5〉. Mean-
while, it can be seen from these Tables that the period of
sequences modulo pk is p times as long as that in the op-
eration of modulo pk−1 when k ≥ 4. In this section, we
seek conditions for such periodic properties of Chebyshev
polynomial sequences modulo pk.

Assume X and w ≥ 1 satisfy the relation

Tn(X) ≡ X mod pw,

Tn(X) . X mod pw+1.
(8)

According to (8), there exits an integer b ∈ {1, 2, · · · , p−1}
such that

Tn(X) = X + b · pw. (9)

Let G be a finite field with characteristic p. The order
of an element m in the group G, denoted as ord(m), is the
least positive number such that mord(m) ≡ 1 mod p. These
lemmas will be used in the following discussion.

Lemma 2 Let p be a prime number. For any integer x ,
0, 1,

1 + x + x2 + · · · + xord(x)−1 mod p ≡ 0 (10)

Proof: Since xord(x) − 1 = (x− 1)(xord(x)−1 + xord(x)−2 + · · ·+
x + 1) ≡ 0 mod p and x − 1 . 0 mod p, (10) holds. �

Lemma 3 Let p be a prime number. For any integer x , 0,

1 + x + x2 + · · · + xp−1 mod p ≡
{

1, x , 1
0, x = 1. (11)
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Table 1: The list of periods N for several values of x and k,
where p = 3 and n = 5.

x = 2 x = 3 x = 4 x = 5 x = 6
k = 1 1 1 1 1 1
k = 2 1 2 1 1 2
k = 3 3 6 1 1 6
k = 4 9 18 3 3 18
k = 5 27 54 9 9 54

Proof: Using xp − 1 = (x − 1)(xp−1 + xp−2 + · · · + x + 1)
together with Fermat’s little theorem, xp ≡ x mod p, it is
easy to see that the equation (11) holds. �

Let T ′n(x) be the derivative of Tn(x) with respect to x.
Then, we have the following lemma.

Lemma 4 For any x, T ′n(x) . 0 mod p.

Proof: We just recall the result of [12]. If there is an inte-
ger x such that f ′(x) ≡ 0 mod p, the number of solution of
f (x) ≡ 0 mod pk is none, where f (x) is any integral poly-
nomial. Since Tn(x) mod pk is a permutation polynomial,
there is an integer such that Tn(x) = 0 mod pk. Thus, the
assertion is verified. �

Firstly, we show the following lemma, which means that
the period of Tn(X) mod pw+1 is related to the value of
T ′n(X) mod p.

Lemma 5 Assume X and w ≥ 1 satisfy the relation of (8)
Let ` = ord

(
T ′n(X)

)
for T ′n(X) . 1 mod p and ` = p, other-

wise. Then, T `n(X) ≡ X mod pw+1.

Proof: Substituting (9) into Tn(x) = a1x+a3x3 + · · ·+anxn

gives

T 2
n (X) = a1(X + b · pw) + a3(X + b · pw)3 + · · ·

+ an(X + b · pw)n

≡ Tn(X) + b · pw · T ′n(X) mod pw+1

≡ X + b · pw(T ′n(X) + 1
)

mod pw+1.

(12)

Repeating the above, it holds that

T i
n(X) ≡ X + b · pw

i−1∑
m=0

T ′n(X)m mod pw+1. (13)

where integer i ≥ 1. By virtue of Lemmas 2 and 3, the
assertion is verified. �

Let us define G as G(x) = T i
n(x) = Tni (x) for a positive

integer i > 1. From the semi-group property of Chebyshev
polynomials, G is also a Chebyshev polynomial of odd de-
gree. The chain rule is a formula for computing the deriva-
tive of the composition of two functions f and g, that is,(
f (g(x))

)′
= f ′(g(x)) · g′(x).

Lemma 6 Assume X and w ≥ 1 satisfy the relation of (8).
Let G = T i

n. For i ≥ 1,

G′(X) ≡ (T ′n(X)
)i mod p. (14)

Table 2: The list of periods N for several values of x and k,
where p = 5 and n = 7.

x = 2 x = 3 x = 4 x = 5 x = 6
k = 1 1 1 1 1 1
k = 2 4 4 2 4 2
k = 3 4 4 2 4 2
k = 4 20 20 10 20 10
k = 5 100 100 50 100 50

Table 3: The list of periods N for several values of x and k,
where p = 7 and n = 5.

x = 2 x = 3 x = 4 x = 5 x = 6
k = 1 2 1 1 2 1
k = 2 6 3 3 2 3
k = 3 42 21 21 6 21
k = 4 294 147 147 42 147
k = 5 2058 1029 1029 294 1029

Proof: Using mathematical induction together with
Tn(X) ≡ X mod p leads to (14). �

When w ≥ 2, (13) also holds in the operation of modulo
pw+2. Thus, we have the following lemma.

Lemma 7 Assume X and w ≥ 2 satisfy the relation of
(8). If T ′n(X) ≡ 1 mod p, then T p

n (X) ≡ X mod pw+1 and
T p

n (X) . X mod pw+2.

Next, we show a condition of X for which the period of
sequence {T i

n(X) mod pk}N−1
i=0 becomes p times longer as k

increases.

Lemma 8 Let m be a positive integer. Assume X and w ≥ 2
satisfy the relation of (8). If T ′n(X) ≡ 1 mod p, then

T pm

n (X) ≡ X mod pw+m,

T pm

n (X) . X mod pw+m+1.
(15)

Proof: We prove the above lemma by mathematical induc-
tion. It is shown by Lemma 7 that the case of m = 1 is
satisfied. Suppose that (15) is true when m = s. From
the semi-group property of Tn, G = T ps

n = Tnps is also
a Chebyshev polynomial. Using (14), G′(X) ≡ 1 mod p.
Therefore, by Lemma 7, we have Gp(X) ≡ X mod pw+s+1

and Gp(X) . X mod pw+s+2, which means (15) is also true
with m = s + 1 since Gp = T ps+1

. From the above discus-
sions, (15) is satisfied for arbitrary m ≥ 1, which completes
the proof. �

As a direct consequence of the above lemma, the period
of Chebyshev polynomial sequences modulo pk is derived
as N = pk−w under the assumption that the condition of (8)
is satisfied.

Example 1 When p = 3, n = 5 and X = 2, we obtain w =
2 since T5(2) ≡ 2 mod 32 and T5(2) . 2 mod 33. Since
T ′n(2) ≡ 1 mod 3, the period N of the sequence {T5(2) mod
3k} is derived as N = 3k−2 for k ≥ 2.
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Finally, we have the following theorem.

Theorem 2 Assume X and w satisfy the relation of (8). Let
` = ord(T ′n(X)) for T ′n(X) . 1 mod p and ` = p, otherwise.
Then, there is an integer w2 such that T `n(X) ≡ X mod pw2

and T `n(X) . X mod pw2+1. Furthermore, the period of
Chebyshev polynomial sequences {T i

n(X) mod pk}N−1
i=0 is de-

rived as N = ` · pk−w2 for k ≥ w2.
When Tn(X) . X mod p, there is a least positive integer

s such that T s
n(X) ≡ X mod p. Let G = Tns , then there is

an integer w2 such that G`(X) ≡ X mod pw2 and G`(X) .
X mod pw2+1, where ` = ord(G′(X)) for G′(X) . 1 mod p,
and ` = 1, otherwise. For k ≥ w2, the period of Cheby-
shev polynomial sequences {T i

n(X) mod pk}N−1
i=0 is derived

as N = s · ` · pk−w2 .

Proof: First, we consider the case for X with w ≥ 1. As-
sume T `n(X) ≡ X mod pw+1. Let G = Tn` (x), then, there
is an integer w2 ≥ 2 such that G(X) ≡ X mod pw2 and
G(X) . X mod pw2+1. Since ` is the order of T ′n(X) mod p,
G′(X) =

(
T ′n(X)

)` ≡ 1 mod p. Together with Lemma 8,
Gk−w2 (X) ≡ X mod pk, which implies that the period of
Chebyshev polynomial sequence {T i

n(X) mod pk}N−1
i=0 must

be N = ` · pk−w2 .
For the case that Tn(X) . X mod p, G(X) ≡ X mod p.

By the same argument as the above, the period of sequence
X,G(X) mod pk, · · · is derived as ` · pk−w2 . Thus, we obtain
N = s · ` · pk−w2 for k ≥ w2. �

Using Theorem 2, forming a sequence as X,Tn(X) mod
pk, · · · T N−1

n (X) mod pk is not needed to investigate the pe-
riod. We just try to find the value of w2 from w2 = 1 to k
and the order of derivatives T ′n(X) or G′(X) modulo p. Af-
ter finding w2, the period of sequence {T i

n(X) mod pk}N−1
i=0

is derived for any k ≥ w2.

Example 2 When p = 5, n = 7 and X = 2, we obtain
w = 1. Since T ′7(2) ≡ 2 mod 5 and 24 ≡ 1 mod 5, ` = 4.
Since T 4

n (2) ≡ 2 mod 53 and T 4
n (2) . 2 mod 54, the period

N is derived as N = 4 · 5k−3 for k ≥ 3.

Example 3 When p = 7, n = 5, and X = 2, Tn(X) .
X mod p. Define G = Tn2 , then G(2) ≡ 2 mod 7 and
G(2) . 2 mod 72 and G′(2) ≡ 4 mod 7. Since 43 mod 7 =
1, ` = 3 and G3(2) ≡ 2 mod 72 and G3(2) ≡ 2 . 73,
Therefore, the period N of sequence {T i

n(2) mod 7k}N−1
i=0 is

derived as N = 2 · 3 · 7k−2 for k ≥ 2.

One can also see that the numerical results in Tables 1,
2, and 3 are consistent with our theoretical results.

3. Conclusion

In this paper, we showed that Chebyshev polynomials
become permutation polynomials over the residue rings of
integers of powers of odd prime. We also derive the peri-
odic property of Chebyshev polynomial sequences over the
ring under some conditions. The result is useful for finding
the period of Chebyshev polynomial sequences.

The detailed analysis of the relation of the period, de-
gree, and initial value of Chebyshev polynomials over pow-
ers of odd prime is much more complicated. This topic is
challenging and needed further research.
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