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Abstract—Clustering in bioinformatics is a fundamen-
tal process involving computational issues that are far from
being resolved. In our work, we propose a new approach to
this problem and show preliminary comparisons to current
leading methods in the field.

1. Introduction

The big data problem has infiltrated many areas of sci-
ence, notably bioinformatics [1]. We focus on a specific
bioinformatics problem here: the identification, discovery
and interrelation of cell types. This problem has developed
over recent decades into analysing automated simultaneous
measurements of the abundance of tens of marker proteins
on (or in) tens to hundreds of thousands of cells, most re-
cently using mass cytometry [2]. This shift from individual
to population level investigation gives rise to a new kind of
difficulty in interpretation: how can structure be identified
in a high dimensional space without introducing bias? It
has long been known [3] that nonlinear systems give rise
to convex-concave ‘clusters’ of similar systems (e.g. sys-
tems showing the same periodicity lie on shrimp-shaped
domains in parameter space), and this has recently been
suggested to manifest also in the space of observable fea-
tures more generally [4]. This implies that techniques used
to identify high dimensional structure in mass cytometry
data need to be able to deal with convex-concave clusters.
The neccessity of dealing with convex-concave clusters in
mass cytometry data has also been identified recently, and a
new clustering algorithm specifically proposed to deal with
this problem [5]. This work will discuss our preliminary
investigation of this algorithm, and compare it to our own
clustering approach.

2. Toward unbiased clustering

Standard clustering approaches have a cluster shape bias
that precludes accurate clustering of convex-concave sets.
This bias arises from a (sometimes implicit) non-local dis-
tance criterion, where the distance from a point to a set is
used to define clusters [4]. In order to cluster data without
introducing bias, we need to use purely local pairwise dis-
tances between points, but still somehow ‘integrate’ this in-
formation to the level of a set. As a solution to this problem,
Hebbian Learning Clustering (HLC) has been proposed in

a previous work [4, 6]. HLC ascribes a local ‘node’ dynam-
ics to each data point, and allows the dynamics of the nodes
to interact via a k nearest neighbours graph. The strength
of interaction across each link in the graph is weighted ac-
cording to the distance between the points it connects. By
exploiting a very general trade-off between the similarity of
the node dynamics (homeophily), and the level of activity
in the network (homeostasis), the graph’s weights can self
organise in an iterative manner such that the final connec-
tivity strength of the graph determines the clusters, without
requiring direct interaction across the set, and thus without
introducing cluster shape bias [4, 6, 7]. HLC has recently
been updated to use a more flexible and efficient map-based
node dynamics defined by the Rulkov neuron model [8],
and to fully exploit the sparse connectivity of the k nearest
neighbour interaction matrix, rendering this approach fea-
sible for big data problems [1]. This latest version of our
algorithm, Rulkov HLC (RHLC) is used in this paper, and
is described in Ref. [1].

3. Current leading approaches in mass cytometry data
analysis

3.1. Visualisation: t-SNE

Student t-distributed Stochastic Neighborhood Embed-
ding (t-SNE) [9] is a dimensionality reduction algorithm
created for the visualisation of high dimensional datasets.
Recently, it has been adopted in flow- and mass-cytometry
data analysis under the name viSNE as an interpretation
aid [10]. t-SNE achieves this dimensionality reduction by
trying to match the pairwise distances between the points
in the high and low dimensional spaces, where each dis-
tance is represented by a weight. Without going into de-
tail, we note three features of this process that may cause
problems for the representation of high dimensional com-
plicated convex-concave datasets: i) the weights in the
high dimensional space are normalised locally about each
point, thereby removing local point density information; ii)
the weight between each pair of points is made symmet-
ric by taking the average, thereby introducing artificial in-
homogeneity into the local distance information; iii) the
weights in the high dimensional space are defined accord-
ing to a Gaussian distribution, whereas those in the low
dimensional space are defined according to a Student t-
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distribution (with power law tails) resulting in a diminished
sensitivity to the position of widely spaced points in the low
dimensional space.

3.2. Clustering: PhenoGraph

Many clustering algorithms are currently in use on mass
cytometry data (see e.g. [2, 12] for overviews). Pheno-
Graph [5] stands out in particular both for its claimed ef-
fectiveness and for the apparent similarity of its method-
ology to our own clustering algorithm that has been pro-
posed to overcome the difficulties of standard approaches
[4, 6]. PhenoGraph begins by constructing a weighted k
nearest neighbours graph between the input data points.
There are however two clear points of difference from
HLC: i) the weights of the graph are not determined us-
ing the Euclidean distance directly, but instead using the
Jaccard distance calculated on the neighbourhood overlap
of the points; ii) the subdivision of the weighted graph into
clusters is achieved using a well-known community detec-
tion algorithm [13]. The PhenoGraph approach has been
shown to produce results that are consistent with major fea-
tures identfied by manual analysis of mass cytometry data
[5]. The manual analysis of mass cytometry data however,
has a number of limitations. Analysis proceeds by ‘man-
ual gating’: defining clusters by sequentially selecting the
points within regions (‘gates’) in a succession of two di-
mensional projections of the data. Each individual gate
may not necessarily be convex in the projection in which
it is defined, but in all other dimensions it is convex. This
places severe restrictions on the kinds of high dimensional
data structures that can be identified by manual gating, and
so the suitability of manual gating for high dimensional
mass cytometry data has been repeatedly questioned (e.g.
[5, 10]). Moreover, it is possible that either the Jaccard
distance (which has a normalising effect on data density),
or the objective function used in community detection al-
gorithms (which compares weights within the entire com-
munity/cluster) might compromise the local information of
the k nearest neighbours graph and lead to a cluster size or
shape bias.

4. Benchmarking

We test PhenoGraph by benchmarking against custom
synthetic datasets. Clustering can be seen as an ‘unsuper-
vised’ task: one does not know the ‘correct’ answer. There-
fore, before clustering algorithms can be used on real data,
they need to be shown to produce stable and accurate re-
sults over a wide range of parameters on suitable test data.
We base our benchmarking on synthetic two dimensional
datasets, as this simplifies both the specification of arbi-
trarily complicated data structures, and the detailed inter-
pretation of clustering results far beyond what is possible
using standard clustering quality measures. As interesting
problem settings are high dimensional, we generate high

dimensional test datasets by embedding two dimensional
datasets in higher dimensions. This approach permits the
detailed analysis of high dimensional clustering results in
the original two dimensional space. Using synthetic data
for benchmarking (as opposed to, e.g. manually gated mass
cytometry data) moreover guarantees the accuracy of the
test labels.

To provide an overview of the clustering results across
a range of parameters, we use the standard F1 score or F-
measure, i.e. the harmonic mean between ‘precision’ and
‘recall’ of a given cluster i with respect to a retreived cluster
j

Fi j = 2
fp fr

fp + fr
, (1)

where the precision, fp is the fraction of points in the re-
trieved cluster j that are correctly assigned to given cluster
i, and the recall, fr is the fraction of the points in the given
cluster i that are assigned to the retrieved cluster j. For
each given cluster i, Fi j will be different for different j. We
define Fi = max jFi j, and as an overall characterisation of
the clustering, take either a mean, giving the unweighted
F-measure F = 1

n
∑

i Fi, or a weighted mean, giving the
weighted F-measure Fw =

∑
i
|i|
N Fi, where n is the num-

ber of given clusters i, and N is the total number of data
points. These are standard statistical measures used for the
assessment of clustering algorithms in general, including
cytometry clustering algorithms [11, 12].

4.1. Two dimensions

We generated a suite of datasets of varying difficulty,
each containing convex-concave shapes, with varying de-
grees of background noise. Selected here as an illustra-
tive (rather than representative) example is a dataset of two
concentric rings, with equal uniform density, separated by
a thin band of lower density uniform noise (when calcu-
lating the F-measure, the assignment of points in the band
of low density noise was ignored). We see in Fig. 1 that
PhenoGraph does not successfully cluster this dataset for
any tested value of k. Despite claims to the contrary, there
is a clear cluster shape/size bias that precludes the inclusion
of the entire outer ring in one cluster before the inner ring
is also included. RHLC, by contrast, can successfully deal
with this problem for a wide range of parameters (Fig. 2).

4.2. Higher dimensions

Our high dimensional test dataset with convex-concave
structures for benchmarking, is composed from test
datasets in 2 dimensions of differing sizes and densities
highlighting a range of different difficulties that may be
faced in clustering natural data. We transformed this two
dimensional composed dataset into 8 dimensions accord-
ing to

(x, y)→ (x + y, x − y, x2, y2, xy, x2y, xy2, x3y2) , (2)
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Figure 1: PhenoGraph performance on two dimensional
dataset. a) F-measure as a function of the only algorithm
paramter, k, dashed lines indicate F-measure for case where
all points belong to the same cluster. b) Example clustering
result for k = 320, retrieved clusters indicated by colours.

such that the original 2 dimensional dataset now sits on a 2
dimensional sub-manifold of an 8 dimensional space. Al-
though the first two dimensions of the transformation sim-
ply apply a rotation to the original dataset (so that there
exists a projection that retains the original structure), this a
priori knowledge is not available to the algorithms we test.

To illustrate the difficulty of reverse transforming such
convex-concave data from a high dimensional space to two
dimensions, even in the case where they are known to lie
on a 2 dimensional sub-manifold, we performed a t-SNE
transformation of our high dimensional test data set [9].
While it is not to be expected that t-SNE should return the
original 2 dimensional configuration of points, we found
that the t-SNE transformed data could not reasonably be
interpreted in a way that would return the correct point la-
beling. While the major convex sets were preserved, the
major convex-concave sets were partitioned in such a way
that the pieces were no longer adjacent in the two dimen-
sional space. More complicated convex-concave sets were
partitioned into many pieces spread across the two dimen-
sional plane, illustrating the difficulty of using t-SNE tran-
formed data for interpretation.

Testing PhenoGraph on our high dimensional dataset, we
found that it suffered similar problems to the two dimen-
sional case, namely, an inherent cluster size/shape bias as a
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Figure 2: RHLC performance on two dimensional dataset.
a) F-measure as a function of primary algorithm parame-
ter: number of nearest neighbours k. b) Example clustering
result for k = 63, retrieved clusters indicated by colours.

function of its parameter (Fig. 3). Although the weighted
F-measure appears to monotonically increase across the
tested range, we observe that this already coincides with an
incorrect coarse grouping and splitting of clusters that can
be expected to deteriorate further with further increasing k.
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Figure 3: PhenoGraph performance on high dimensional
dataset. F-measure as a function of the only algorithm
paramter, k, dashed lines indicate F-measure for the case
where all points belong to the same cluster.

RHLC avoids this inherent cluster size/shape bias, and
can successfully cluster the data over a wide range of pa-
rameters (Fig. 4). Even for RHLC however, this dataset is
exceptionally difficult. RHLC has no local density normal-
isation, and we note that it struggles to cluster the lowest
density cluster. This points the way toward a sequential
clustering approach in future implementations.
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Figure 4: RHLC performance on high dimensional dataset.
F-measure as a function of primary algorithm parameter:
number of nearest neighbours k, dashed lines indicate F-
measure for case where all points belong to the same clus-
ter.

5. Real data and outlook

The synthetic data examples presented so far provide im-
portant insight into the limitations of PhenoGraph and t-
SNE, but how do these manifest when they are applied to
real data? We are currently testing RHLC on one of the
datasets used to benchmark PhenoGraph: a mass cytome-
try dataset of healthy human bone marrow cells described
in Ref. [14]. We find that RHLC consistently merges
some large clusters that were split both by manual gating
and PhenoGraph. However based on our synthetic results,
where PhenoGraph made artificial partitions of the clus-
ters, we are currently investigating whether this is an RHLC
clustering error, or whether these groups of cell types are
actually joined in this dataset in a continuum of cell differ-
entiation in high dimensions.
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