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Abstract—In this paper, we try to detect the early-
warning signal from time series data. Simple mathematical
models with noise and a real system are used to obtain the
data. We calculate autocorrelation functions at the param-
eter values close to and away from a bifurcation. We deter-
mine that an averaged peak interval of the autocorrelation
function is a good indicator for predicting bifurcations.

1. Introduction

Detecting bifurcation points from time series is the im-
portant and challenging issue because complex dynami-
cal systems, ranging from ecosystems to financial markets
and the climate, can have critical points at which a sudden
shift to a contrasting dynamical regime may occur [1, 2, 3].
Scheffer et al. reviewed many methods of detecting early-
warning signals applied to simple mathematical models to
real systems [1]. Chen et al. detected a “pre-disease” state
using network biomarkers [4]. Peng et al. proposed de-
trended fluctuation analysis (DFA) for determining the sta-
tistical self-affinity of a signal [5] and applied it to heart-
beat time series data [6]. Yazawa proposed a modified DFA
method and obtained a scaling index of judging a healthy
condition from heartbeat [7].

In this study, we use the autocorrelation function (ACF)
to capture early-warning signals just before bifurcations in
simple mathematical models. Then, we apply it to heart-
beat data from an experiment. We determine that the aver-
aged peak interval of the autocorrelation function is one of
good indicators for detecting bifurcations.

2. Model equations

We use the BVP model [8] and Luo-Rudy model [9] in
this study. BVP equations are described by

dx
dt

= ωy − σx

dy
dt

= −ωx + ϵ(1 − βy2)y.
(1)

These equations describe the behavior of an electric circuit
containing an inductor, a capacitor, and linear and non-
linear resistors [8]. These equations are derived from the
simplification of the Hodgkin-Huxley equations which de-
scribe the electric property of the squid axon. In this paper,
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Figure 1: Bifurcation diagram for BVP equations

we set ω = 1.0 and β = 1.0, and change the values of ϵ and
σ.

The membrane potential V of the LR model with the
synaptic external input is described by

C
dV
dt
= −(INa + ICa + IK + IK1 + IK p + Ib + Isyn). (2)

This is a mathematical model of the mammalian (guinea
pig) ventricular cell. In this paper, we change the values
of [K]o (free concentration of the potassium ions in the ex-
tracellular compartment) because we had determined that
increasing [K]o triggers a period-doubling bifurcation gen-
erating alternans [10].

3. Results

3.1. BVP model

A bifurcation diagram is shown in Fig. 1. In this figure,
thin solid and dotted curves indicate Hopf and pitchfork
bifurcations of equilibrium points, respectively. A periodic
solution is generated by crossing the Hopf bifurcation from
bottom to up. The periodic solution disappears by the tan-
gent bifurcation denoted by a thick solid curve in Fig. 1.
We observe the stable periodic solution in a gray parameter
region. Here, we try to quantify the stability of the periodic
solution from time series of the state variable x. We set
ϵ = 2.0 and change the value of σ in Eq. (1) to control the
distance to the tangent bifurcation.

Figures 2(a) and 2(b) show waveforms of x at the points
away from and close to the bifurcation point. Next, we
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(a) ϵ = 2.0 and σ = 0.1
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(b) ϵ = 2.0 and σ = 0.67

Figure 2: Waveforms of x

add the Gaussian white noise ξi(t) to x in Eq. (1), where
<ξi(t) ξi(t′)> = δ(t − t′). Noise-added waveforms of x are
shown in Figs. 3(a) and 3(b). We calculate ACFs for Figs.
3(a) and 3(b). The ACF of data Xi is given by

R(τ) =
E[(Xi − µ)(Xi+τ − µ)]

η2 (3)

where E[·] is the expected value, µ and η are the mean and
variance of data Xi, respectively. The results are shown in
Figs. 4(a) and 4(b). Next, we calculate the mean of peak

-10

-5

 0

 5

 10

 0  50  100  150  200  250  300  350  400

x

time 

(a) ϵ = 2.0 and σ = 0.1
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(b) ϵ = 2.0 and σ = 0.67

Figure 3: Noise-added waveforms of x

intervals of low-passed noise-added waveforms as a func-
tion of the parameter σ to estimate the stability of the peri-
odic solution. The result is shown by a solid curve in Fig. 5.
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(a) ϵ = 2.0 and σ = 0.1
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(b) ϵ = 2.0 and σ = 0.67

Figure 4: Autocorrelation function of noise-added wave-
forms
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Figure 5: Period of periodic solution (dotted curve) and
mean of peak intervals of noise-added waveform (solid
curve) as a function of σ

Note that the tangent bifurcation occurs at σ ≃ 0.6711. We
also present the period of the periodic solution in the noise-
free system for comparison (a dotted curve in Fig. 5). The
period of the noise-free data is increased as σ approaches
the bifurcation point. On the other hand, the averaged peak
intervals are decreased. We consider that this characteristic
of the averaged peak intervals is independent from the na-
ture of the periodic solution in the noise-free system, thus
the averaged peak interval of the ACF is one candidate for
detecting a bifurcation point from time series data.

3.2. Luo-Rudy model

Next, we apply our indicator to the Luo-Rudy model. We
try to quantify the stability of the periodic solution from
time series of the membrane potential V . We change the
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values of [K]o: a normal value in [9] is 5.4 and a period-
doubling bifurcation occurs around 6.583 [10]. Figures
6(a) and 6(b) show waveforms of V at these parameter val-
ues. Next, we add the Gaussian white noise to V in Eq. (2).
We add the noise during phase 2 (plateaus of V). Resultant
waveforms are shown in Figs. 7(a) and 7(b). We calcu-
late ACFs for these waveforms, which are shown in Figs.
8(a) and 8(b). A two-periodic-like waveform of the ACF
appears only in Fig. 8(b), thus the ACF has a possibility of
discrimination between Figs. 6(a) and 6(b).
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(a) [K]o = 5.4
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Figure 6: Waveforms of V in Luo-Rudy model

(a) [K]o = 5.4

(b) [K]o = 6.57

Figure 7: Noise-added waveforms for Luo-Rudy model
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(a) [K]o = 5.4

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  1000  2000  3000

au
to

co
rr

el
at

io
n
 f

u
n
ct

io
n

delay time  [ms]

(b) [K]o = 6.57

Figure 8: ACF for Luo-Rudy

3.3. Experimental data

Next, we apply our indicator to a real system. Yazawa
measured the heartbeat of bumblebees for a long time. Fig-
ures 9(a) and 9(b) show typical waveforms of a normal state
and just before generating abnormal rhythm. We apply the
previous process except for adding noise to these data be-
cause these measured data already contain noise. Figures
10(a) and 10(b) show ACFs of Figs. 9(a) and 9(b). The
results of the averaged peak intervals are 143.999[ms] and
219.857[ms] for a normal state and just before an abnor-
mal state, respectively. The indicator is increased as the
state approaches a abnormal state. It is an opposite result
to the BVP model. The detailed analysis is one of our fu-
ture problems.

4. Conclusion

We investigated indicators of detecting bifurcation
points from time series in mathematical models and exper-
imental data. First, we determined that the averaged peak
interval of the autocorrelation function is one of good in-
dicators for detecting a tangent bifurcation using the BVP
model. Second, we applied our indicator to more realistic
mathematical model: a model of the mammalian (guinea
pig) ventricular cell. The autocorrelation function between
a normal state and just before a period-doubling bifurcation
have different shapes, however the averaged peak interval
of the autocorrelation function is almost the same because
the period of the external input is the same. We are now
trying to quantify these differences. Last, we applied it to
experimental data on heartbeat of bumblebees. However,
the result is opposite to the BVP’s case. We need more
results for various computer simulations and experimental
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Figure 9: Heartbeat of bumblebee

data to check the validity of our method. Now we are tack-
ling such issues to obtain better results.
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Figure 10: ACF for heartbeat of bumblebee
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