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Abstract—Intrinsic localized mode (ILM) is a spa-
tially localized and temporary periodic solution in non-
linear lattices. In this report, Rotating ILMs in one-
dimensional Fermi-Pasta-Ulam (FPU) chain placed in
three-dimensional space are focused on. First we derive
an equation of motion and dispersion relations of longi-
tudinal and transverse waves. By using Newton-Raphson
method, we investigate existence regions of the rotating
ILMs in two-dimensional parameter space consisting of the
rotational period and the initial extension of the chain. In
addition, stability is evaluated for the rotating ILM in the
regions by using characteristic multipliers. As a result, It is
shown that the rotating P mode exist in wider region than
that of ST mode. In addition, stability analysis also shows
that the rotating P mode has wider stable region than the ST
mode. Moreover, we derive the upper bound of the rotation
period in the case of P mode.

1. Introduction

It is well known that a spatially localized and temporary
periodic solution called intrinsic localized mode (ILM) ex-
ist in nonlinear lattice[1], such as graphene, protein, and
DNA[2, 3]. It implies that ILM can be utilized to nanotech-
nology. We have focused on the carbon monoatomic chain
in which carbon atoms are linearly-arranged. It has been
reported that the carbon monoatomic chain can be fabri-
cated from graphene sheet[4] and it will have very high
heat conductivity at the room temperature[5]. Neighboring
carbon atoms nonlinearly interact each other with respect
to the distance between them[6]. Therefore, vibration of
each carbon atom in the chain can be modeled as a non-
linear lattice. The aim of our research is to find ILM in
the carbon monoatomic chain and to utilize it to control the
heat conduction.

Although the carbon monoatomic chain can be modeled
as a nonlinear lattice, there is the significant difference that
each carbon atom can move not only the axial direction
but also the radial direction. The degree of freedom of
the radial direction will cause many differences from the
traditional one-dimensional nonlinear lattice that the mo-
tions are constrained along the axis of the lattice. Then,
we have first focused on the Fermi-Pasta-Ulam-β (FPU-β)
chain which is well-known model in which ILM exists[7].
In our previous research, two novel types of ILM was

found, namely, the transverse and the rotating ILMs[8]. In
this paper, stability and existence parameter regions of the
rotating ILMs are investigated.

2. FPU-β chain in three dimensional space

Fermi-Pasta-Ulam chain is the one-dimensional nonlin-
ear lattice that has linear and cubic interaction. Equilib-
rium state of the chain is shown Fig.1(a). In the figure,
l0 is natural length of nonlinear spring connecting neigh-
boring masses and a is displacement. If a is positive, the
chain is initially extended, and vice versa. When the sys-
tem is placed in three-dimensional space, any masses can
move not only longitudinally (along the axis) but also trans-
versely (perpendicular to the axis) (see Fig.1(b)). There-
fore, the equation of motion of the masses is described as:

m
d2rn

dt2 =α(|rn+1 − rn| − l0)
rn+1 − rn

|rn+1 − rn|
+ β(|rn+1 − rn| − l0)3 rn+1 − rn

|rn+1 − rn|
+ α(|rn−1 − rn| − l0)

rn−1 − rn

|rn−1 − rn|
+ β(|rn−1 − rn| − l0)3 rn−1 − rn

|rn−1 − rn|
, (1)

where rn is the position vector from equilibrium position
to each mass. α and β are coefficients of the linear and cu-
bic nonlinear interaction, respectively. In this paper, rn is
treated as a three-dimensional vector in the Cartesian coor-
dinate system, namely, rn = (n(l0 + a) + xn, yn, zn) where
xn is longitudinal displacement and yn or zn is transverse
displacement of each mass.

Dispersion relation can be obtained by linearizing Eq.(1)

ωx = 2

√
α + 3βa2

m
sin

∣∣∣∣∣kx

2

∣∣∣∣∣, (2)

ωy = 2

√
αa + βa3

m(l0 + a)
sin

∣∣∣∣∣∣ky

2

∣∣∣∣∣∣, (3)

where ωx and ωy denote angular frequency of longitudinal
and transverse waves, respectively. Since the chain is cylin-
drically symmetric, ωz is the same as ωy. Eqs.(2) and (3)
show that there are upper bound for the frequencies ωx and
ωy. To exist an ILM, the ILM should avoid to resonate with
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linear plain waves, namely, the frequency of the ILM ωb

should be greater than ωx = 2
√
α+3βa2

m or ωy = 2
√
αa+βa3

m(l0+a) .
In this paper, m, α, and l0 are set unity, and β is fixed at 25.
The number of masses is chosen to be eight.

3. Rotating ILM

In the FPU-β chain placed in three-dimensional space,
three kind of ILM exist, namely, longitudinal, transverse,
and rotating ILMs (see Fig.2)[8]. The longitudinal ILM co-
incides with the traditional ILM in which each mass move
only along the axis of the chain. On the other hand, trans-
verse ILM mainly consists of perpendicular oscillation to
the axis. For more details of these two types otational
period of ILMs, see Ref.[8]. The rotating ILM which is
focused on in this paper is also a spatially localized and
temporary periodic solution of Eq.(1) in which each mass
rotates around the axis of the chain. An example of the
rotating ILM is shown Fig.3. As shown in the Fig.3, a
few masses have large amplitude and the phase difference
between yn and zn equal π/2. Thus, each mass rotates
around the axis, and the radii of the rotations are local-
ized. In addition, in Fig.3(a), two neighboring masses (4th
and 5th) oscillate in antiphase with the same amplitude
while the other masses show very small amplitude motion.
Therefore, the amplitude distribution correspond to Page
mode[7]. In this paper, rotating P mode is abbreviated as
R-P mode. Fig.3(b) shows a different ILM from R-P mode
in spatial symmetry of the amplitude distribution. The 4th
mass has the largest amplitude and the 3rd and 5th masses
have the same amplitude which rather smaller than that of
the 4th mass but sufficiently large comparing with the other
masses. This amplitude distribution correspond to Sievers-
Takeno mode[7]. The rotating Sievers-Takeno mode is also
abbreviated as R-ST mode. Note that, the length of all the
nonlinear springs connecting nearest neighbor masses are
time-invariant while the rotating ILM is oscillating. That
is, all the masses do not oscillate with changing the length
of the nonlinear springs like the longitudinal and transverse
ILMs. Therefore, another existence condition should be
considered instead of the non-resonant condition Eqs.(2)
and (3).

(a) Equilibrium state

　
(b) Position vectors

Figure 1: FPU-β chain place in 3D space

(a) Longitudinal ILM

(b) Transveral ILM

(c) Rotating ILM

　

Figure 2: Three kinds of ILM in FPU-β chain
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(a) Rotating P mode
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(b) Rotating ST mode

Figure 3: Wave profile of rotating ILM. a = 0, T = 1.5
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4. Analysis of rotating ILM

In this section, we focus on the rotating ILMs mentioned
in the previous section. Stability and existence region of
the rotating ILM will be discussed below.

4.1. Dependence on parameter and bifurcation

Figure 4(a) shows R-P modes with respect to the rota-
tion period when the initial extension a is fixed at 0.1. In
the figure, the vertical axis shows the maximum radius of
the R-P mode and horizontal axis shows the rotation period.
The radius of the R-P mode decreases as the rotation period
increases and disappears at about T = 9.5 through a bifur-
cation. On the other hand, as shown in Fig.4(b), the R-ST
mode disappear at about T = 4.7 , at which two branches
coalesce. The other branch consist of the R-P modes that
the 3rd and the 4th masses have the largest radius (see inset
of Fig.4(b)). Thus, it seems that existence regions of R-P
mode are strongly related to the position where the ILM
stands.

4.2. Existence regions and stability

For the stability analysis, the characteristics multipliers
are computed for each rotating ILM. Since the system of
Eq.(1) is a conservative system, ILM is stable if and only
if all the characteristic multipliers are located on the unit
circle in the complex plane. Otherwise, the rotating ILM is
unstable[9].

Figure 5 shows the parameter regions and stability of the
ILMs. In the figure, the vertical axis shows the rotation pe-
riod and horizontal axis shows the initial extension. The
colors of the regions correspond to the maximum absolute
values of the characteristic multipliers. As shown in the
figure, there is the tendency that the range of the rotation
period become narrow as the initial extension increases. In
addition, the region of the central R-P modes in Fig3(a)
are larger than those of the R-ST modes. The difference
may come from the position of ILM and the size of the
chain. R-P mode in Fig.3(a) is located exactly at the cen-
ter of the chain, while another R-ST R-P modes shown in
Fig.4(b) is not. If the size of the chain is sufficiently large,
the difference of existence region will decrease unless R-P
mode stands near the boundaries of the chain. The stability
analysis shows that there is a relatively large area, which
is colored by blue, where the R-P modes are almost stable.
On the other hand, such stable region does not exist for the
R-ST modes. Therefore, it is implied that the stability of
the rotating ILMs depends on the spatial symmetry of am-
plitude distribution.

4.3. Existence condition for R-P mode

In the case of the R-P mode, the bifurcation diagram
shows that the radius of the rotation approaches zero as the
period increases. In the small amplitude regime, Eq.(1) can
be linearized. Here we assume the uniform solution that

(a) R-P (b) R-ST and R-P’

Figure 4: Dependence on parameter T . a=0.1. The insets
indicate displacement distributions. (a) R-P mode at the
center of the chain (b)R-ST and R-P’mode.

(a) R-P (b) R-ST

Figure 5: Existence regions of rotating ILMs and stabil-
ity. The colorbar indicates the maximum absolute value of
multipliers. (a) R-P mode. The curve expresses Eqs.(6) (b)
R-ST mode.

each mass has the same radius of rotation r0 (see Fig.6).
For the uniform solution, we obtain the following equaitons
from Eq.(1):

l2 = (1 + a)2 + (2r0)2, (4)

r0

(
2π
T

)2

= 2
{
(l − 1) + 25(l − 1)3

} 2r0

l
. (5)

These equations mean that the restoring force of the spring
and centrifugal force of angular frequency 2π

T are balanced.
By linearizing the equations around r0 = 0, we obtain a
relational expression between the rotation period and initial
extension as follows:

T = π

√
1 + a

a + 25a3 . (6)

The curve in Fig.5(a) is drawn by Eq.(6). As shown in
Fig.5(a), the boundary of the existence region of the R-P
mode is almost coincide with the theoretical curve. There-
fore, it seems that Eq.(6) gives the upper bound of the ro-
tation period of the rotating ILM. Interestingly, Eq.(6) has
the same form as Eq.(3) when ωy =

2π
T .

5. Conclusion

In this paper, we have focused on the rotating ILM in
the FPU-β chain and discussed the existence condition and
the stability. We have revealed parameter regions where
the rotating ILM can exit. As a result, it has been found
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Figure 6: Displacement distribution near the bifurcation we
assume in the case of R-P mode.

that the region for the R-P mode is wider than that of the
R-ST mode. Stability analysis has also shown that the R-P
mode has wider stable region than the R-ST mode. In addi-
tion, the upper bound of the rotation period has successfully
been obtained for the R-P mode which stands at the center
of the chain by using a uniform solution and the small am-
plitude approximation. However, the upper bound is not
well-fit to the case of R-ST mode which does not stand
on the center. The bifurcation occurs before the amplitude
becomes sufficiently small. An analysis without the small
amplitude approximation would be required. From the re-
sults of the paper, one can expect that a stable or nearly sta-
ble rotating ILM exist in a realistic system in which masses
are connected nonlinearly, such as the carbon monoatomic
chain. In the future, we will search localized solutions in a
nonlinear lattice model of the carbon monoatomic chain.
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