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Abstract—We have been designing a pseudorandom
number generator with iteration maps, and studying char-
acteristic properties of the logistic maps over prime fields,
where a prime field means modular arithmetics with a
prime number p. The maps behave like quadratic maps
over prime fields. In this present paper, we prove a homo-
morphic relation between the original logistic map and the
quadratic map. We also prove that the number of structures
constructed by these maps is only (p+1)/2 and all of these
maps correspond to the logistic maps over prime field by
automorphism.

1. Introduction

Logistic map is one of the most famous chaotic maps[1].
It can produce a long and unpredicted sequence by an it-
erative mapping. In the implementation accurately for the
computers, since the number of precision for the mapped
value is twice or three times as many bits as one of the input
value, we calculate the iterative maps on a finite precision
arithmetic. Many studies such as [2] have been using float-
ing points to implement the iterative map. On the contrary,
we have been studying the logistic map over integers[3, 4].
In these methods, all calculations become integer values
with fixed precisions and rounded fragments. Though they
are good for an implementing on computers, they are also
hard to analyze them theoretically.

We also presented the logistic map over prime field[5, 6,
7] , which is based on the modulus calculation with a prime
number p, so that the elements of input and mapped val-
ues by this map become integer values in [0, p − 1]. This
method is suitable for theoretical analyses. We estimate
that one of the reasons of it comes from no truncation part
in the calculation. For example, Tsuchiya and Nogami have
analyzed a period of the loop in the generated sequence by
this map under specific conditions[8]. We have proved au-
tomorphic relations on the maps with two distinct control
parameters[9]. We also found that the logistic map over
prime field is included in the one of the quadratic maps
over the prime fields. Some studies have already consid-
ered the properties of the map over modulus an integer. For

example, Knuth has proved the longest period of the se-
quence generated by the map[10]. However, his proof can-
not apply to the maps over the prime field. Hence, we are
interested in the properties of each sequence generated by
the map and their variations.

In this present paper, we propose a homomorphic rela-
tion between the original logistic map and the quadratic
maps over the prime fields. Since the quadratic maps in-
clude all of the logistic maps over prime fields, it also ex-
plains the reason why the automorphic relations are oc-
curred. We also prove that the number of structures con-
structed by these quadratic maps is only (p + 1)/2 and all
of these maps correspond to the logistic maps over prime
field by automorphism.

2. Preparation

2.1. Logistic Maps

The logistic map over the real domain is given by

LMR(r) = µr(1 − r), (1)
where r is a real number in [0, 1], and µ is a control param-
eter. Let ri be an input, where i acts as the discrete time.
The iterative mapping for Eq. 1 can be written as follows:

ri+1 = µri(1 − ri). (2)
We derive the logistic map over integers from Eq. 1. Let
n be the precision for elements. By defining r = 2nr and
LM

(n)
R (r) = 2nLMR(r), Eq. 1 can be transformed into

LM
(n)
R (r) = µr(2n − r)/2n.

Let X be the integer part of r and ⌊r⌋ be the floor function,
which outputs the integer part of r. We define a function for
the logistic map over integers as

LM(n)
Int(X) = ⌊µX(2n − X)/2n⌋, (3)

where X ∈ [0, 2n]. Using a method similar to that demon-
strated for Eq. 2, the iterative mapping for Eq. 3 is

Xi+1 = ⌊µXi(2n − Xi)/2n⌋.
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2.2. Logistic Map over Prime Fields

We define a logistic map over prime field LMZp[µp](X) as
follows.

Definition 1. Let p be an odd prime, Zp a prime field mod-
ulo p, and X an element in Zp. Then we define the logistic
map over prime field LMZp[µp](X) as

LMZp[µp](X) =
µpX(p − 1 − X)

p − 1
mod p, (4)

where µp is a control parameter with µp ∈ [1, p − 1].

According the following lemma, we can calculate this
map more efficiently than Eq. 4.

Lemma 1.

LMZp[µp](X) = µpX(X + 1) mod p.

(Proof)
By using Eq. 4, we obtained the following equation:

LMZp[µp](X) ≡
µpX(p − 1 − X)

p − 1

≡
µpX(−1 − X)

−1
≡ µpX(X + 1) (mod p).

□
2.3. Quadratic Map over Prime Fields

A map f (x) = a2x2 + a1x + a0 with a2 , 0 is called as a
quadratic map. We now define a quadratic map over prime
field QMZp

(X) as follows.

Definition 2. Let p be an odd prime, Zp a prime field mod-
ulo p, and A, B,C and X four elements in Zp, where A . 0
(mod p). Then we define the quadratic map over prime
field QMZp

(X) as

QMZp
(X) = AX2 + BX +C mod p. (5)

Then, we prove the next lemma which means that
LMZp[µp](X) is included in a part of QMZp

(X).

Lemma 2. LMZp[µp](X) is equal to QMZp
(X) when A =

B = µp and C = 0.
(Proof)

If A, B and C satisfy these conditions, then

QMZp
(X) ≡ µpX(X + 1) ≡ LMZp[µp](X) (mod p).

□

2.4. Sequences generated by LMZp[µp](X) and QMZp
(X)

Since the ranges of both input value and mapped one are
the same as [0, p− 1], LMZp[µp](X) can calculate iteratively
for any times. Let Xi be an element in Zp satisfying

Xi+1 = LMZp[µp](Xi), i = 0, 1, · · · ,

𝑋𝑖+1 = 𝑋𝑖
2 + 𝑋𝑖   mod 11 𝑋𝑖+1 = 𝑋𝑖

2 + 𝑋𝑖 + 1 mod 11 

0 

9 

10 

8 

2 

3 

4 

5 

7 

1 

6 

5 
4 

10 

9 

6 

1 

7 2 3 

0 

8 

3 7 

8 2 10 

0 

4 

6 

9 

1 5 

𝑋𝑖+1 = 𝑋𝑖
2 + 𝑋𝑖 + 2 mod 11 

(a) Case 1 :  two fixed points 

(b) Case 2 :  one fixed point (c) Case 3 :  no fixed point 

Figure 1: Three trajectories of QMZp
(X) with p = 11,

where A = 1, B = 1 and C of (a),(b) and (c) is 2, 0 and
1, respectively

and let S L a generated sequence by LMZp[µp](X) with an
initial value X0 as

S L = (X0, X1, · · · ).

By using the same manner, a generated sequence S Q by
QMZp

(X) also is described by

S Q = (X0, X1, · · · ), Xi+1 = QMZp
(Xi), i = 0, 1, · · · ,

2.5. Number of Fixed Points on QMZp
(X)

Let X be an element in Zp. Then, X is a fixed point on
QMZp

(X) if and only if X satisfies the following equation:

X = QMZp
(X). (6)

According to the number of fixed point, we can classify the
maps. For example, Fig. 1 illustrates three trajectories with
three cases (a), (b) and (c). Though all of them are based
on Zp with the same p = 11, the number of fixed points in
them are different each other.

By using Eq. 6, we obtained the following equation:

AX2 + (B − 1)X +C ≡ 0 (mod p).

Let D be a discriminant of QMZp
(X), where D = (B −

1)2 − 4AC mod p. Then, the number of fixed points on
QMZp

(X) is defined by D as the following three cases.

• Case 1 : D is a quadratic residue.

There are two distinct and non-zero values E and −E
satisfying (±E)2 ≡ D (mod p). Then, Eq. 6 has just
two distinct solutions as X ≡ (1−B±E)/2A (mod p).
Therefore, the number of the fixed points are also two.

• Case 2 : D is zero.

Equation 6 has only one solution as X ≡ (1 − B)/2A
(mod p). Therefore, the number of the fixed points is
also just one.

- 231 -



• Case 3 : D is a quadratic non-residue.

Since Eq. 6 has no solution, the number of the fixed
points is zero.

Since the number of elements with quadratic residues is
equal to one with quadratic non-residues, the number of D
satisfying Cases 1 and 3 are also the same as (p− 1)/2, and
there is just only one D = 0 satisfying Case 2.

3. Homomorphic Relation between LMZp[µp](X) and
QMZp

(X)

In this section, we prove the next two theorems which
propose homomorphic relations from LMR(r) with rational
numbers to QMZp

(X) and LMZp[µp](X).

Theorem 1. Let q, µq be rational numbers with q in the
closed interval [0, 1] and µq in the half-opened interval
(0, 4]. If parameters satisfy Case 1 in Section 2.5, then there
exists a homomorphic relation from LMR(q) = µqq(1 − q)
to two of QMZp

(X) defined by homomorphic maps Hom(q)
such that

Hom(q) = S q + T (mod p),

where

S =
−1 ± E

A
,T =

1 − B ∓ E
2A

, and µq = −AS mod p. (7)

(Proof)
We prove that Hom(LMR(q))≡QMZp

(Hom(q)) (mod p).

Hom(LMR(q)) ≡ Sµqq(1 − q) + T (mod p),
≡ AS 2q2 − AS 2q + T (mod p),

and

QMZp
(Hom(q)) ≡ A(S q + T )2 + B(S q + T ) +C (mod p),

≡ AS 2q2 − As2q + T + AT 2 + (B − 1)T +C (mod p).

Since AT 2 + (B − 1)T +C ≡ 0 (mod p), we can get

QMZp
(Hom(q)) ≡ AS 2q2 − AS 2q + T (mod p).

Therefore,

Hom(LMR(q)) ≡ QMZp
(Hom(q)) (mod p).

□

We can also prove the next Corollary by the same way
of Theorem 1 with E = 0.

Corollary 1. In Theorem 1, if parameters satisfy Case 2
instead of Case 1, then there also exists a homomorphic
relation from LMR(q) = µqq(1− q) to just one of QMZp

(X)
by homomorphic map Hom(q) such that Hom(q) = S q +
T (mod p), where S ≡ (−1)/A (mod p),T ≡ (1 − B)/2A
(mod p), and µq ≡ −AS (mod p). □
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Figure 2: Two trajectories of QMZp
(X) with automorphic

relation

Next, we consider the following situation that LMR(q)
with one control parameter µq has homomorphic relations
with two distinct maps Q1(q) and Q2(q) which are included
in QMZp

(X) by using two homomorphic maps Hom1(q)
and Hom2(q), respectively. Let X1 and X2 be elements in
Zp such that

X1 = Hom1(q), and X2 = Hom2(q).

Then, we prove the next lemma.

Lemma 3. There is an automorphic relation between Q1(q)
and Q2(q).
(Proof)

Let qp ≡ q (mod p). Then, Hom1(qp) and Hom2(qp) are
two distinct one-to-one mappings on Zp. Let Hom−1

1 (X) be
an inverse map of Hom1(q), such that qp = Hom−1

1 (X1).
Then, Hom−1

1 (X) is also a one-to-one mapping. Therefore,
X1 and X2 can convert each other by using a one-to-one
mapping

X2 = Hom2(Hom−1
1 (X1)).

This means that X1 and X2 have an isomorphic relation each
other. Since X1 and X2 are in Zp, there is an automorphic
relation between X1 and X2. □

Figure 2 demonstrates an example of the homomorphic
relations from LMR(q) = 5q(1 − q) to QMZp

(X) = 2X2 +

2X + 5 mod 11 and QMZp
(X) = 3X2 + 4X + 4 mod 11,

with homomorphic functions Hom(q) = 3q+9 mod 11 and
Hom(q) = 10q + 2 mod 11, respectively. Then, these two
quadratic maps have an automorphic relation, so that these
two trajectories are the same structures.

Theorem 2. LMR(q) with µq = A and (2 − A) satisfy a
homomorphic relation with LMZp[µp](X) with µp = A and
µp = (p + 2 − A) where A = 3, 4, · · · , p − 1.
(Proof)
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By Lemma 2, if QMZp
(X) is equal to LMZp[µp](X), A = B

and C = 0. Hence, we can get

D2 = (B − 1)2 = (A − 1)2, E = ±(A − 1).

When E = A − 1, S ,T and µp defined Eqs. 7 become

S = −1,T = 0, µq = A.

This means that there is a homomorphic relation from
LMR(q) = Aq(1 − q) to LMZp[A](X) = AX(X + 1) mod p
by using Hom(q) = −q mod p.

When E = −(A − 1), S , T and µp become

S =
A − 2

A
, T =

1 − A
A
, µq = 2 − A.

This means that there is a homomorphic relation from
LMR(q) = Aq(1 − q) to LMZp[2−A](X) = (2 − A)X(X +
1) mod p by using Hom(q) = (A−2)q+(1−A)

A mod p.
If A ≥ 3, A and (2 − A) are distinct and non-zero ele-

ment. Therefore, two maps LMZp[A](X) and LMZp[2−A](X)
are corresponding to the same map LMR(q) = Aq(1 − q).

Moreover, we can also see that two maps LMZp[A′](X)
and LMZp[2−A′](X) are corresponding to the same map
LMR(q) = A′q(1 − q), where A′ ≡ 2 − A (mod p). Since
2 − A′ = A, there is two homomorphic relations from
one map LMR(q) = (2 − A)q(1 − q) to LMZp[2−A](X) and
LMZp[A](X).

Therefore, two maps LMR(q) = Aq(1−q) and LMR(q) =
(2 − A)q(1 − q) have homomorphic relations to two maps
LMZp[A](X) and LMZp[2−A](X). □

By using Theorem 2, the number of structures on the
sequences generated by LMZp[µp](X) with µp ∈ [3, p − 1]
becomes (p − 3)/2. Since the structures by LMZp[µp](X)
with µp = 1 and µp = 2 are not the same as them, there are
only (p+ 1)/2 of structures by LMZp[µp](X). By using The-
orem 1 and Lemma 3, we can see that all of QMZp

(X) with
Cases 1 and 2 in Section 2.5 have an automorphic relation
with one of LMZp[µp](X). Therefore, the number of struc-
tures on the sequences generated by these quadratic maps
is just (p + 1)/2, too.

4. Conclusion

In this present paper, we have discussed a few homo-
morphic relations from LMR(q) into QMZp

(X). Since
LMZp[µp](X) has an automorphic relation with each
QMZp

(X) with Cases 1 and 2, and the number of structures
for all trajectories of LMZp[µp](X) is (p + 1)/2, the num-
ber of structures for trajectories generated by the quadratic
maps is also just (p + 1)/2.
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