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Abstract—This report investigates amplitude death in
Cartesian product networks of delay-coupled oscillators.
The Cartesian product networks consist of two sub-
networks which have different connection delays with each
other; that is, the connection delays are not identical in the
whole networks. Although such networks are difficult to
analyze, the feature of the Cartesian product networks al-
lows us to analyze such networks easily. The analytical
result is confirmed by numerical simulations.

1. Introduction

The various collective phenomena in coupled oscilla-
tors have been widely investigated in biological, physi-
cal, chemical, and social systems [1]. One of such phe-
nomena is amplitude death where a homogeneous steady
state in coupled oscillators is stabilized by diffusive con-
nections; that is, the oscillations of all the oscillators
are quenched. Although amplitude death never occurs in
diffusively-coupled identical oscillators [2], connection de-
lays can cause amplitude death even in coupled identical
oscillators [3].

Amplitude death induced by the connection delays has
been great interest in nonlinear science [4]. Various types
of delay connections that cause amplitude death have been
proposed such as the distributed-delay connection [5, 6],
the multiple-delay connection [7], the time-varying delay
connection [8], the integrated delay connection [9], the dig-
ital delay connection [10], the multicomponent delay con-
nection [11], and the mixed time-delay connection [12].
All the previous studies assumes that all the connection de-
lays between oscillators are identical in the whole network.
In the real world, however, it is totally impractical that all
the connection delays are identical. Generally, it is diffi-
cult to analyze the coupled oscillators with non-identical
connection delays.

The Cartesian product is one of the basic operation
on Graph theory [13]. By using Cartesian product, we
can construct various complex networks from simpler sub-
networks, for instance, regular grids are constructed from
two path graphs. It is well-known that the eigenvalues
of the Laplacian matrix of a Cartesian product network
are calculated by the sum of the eigenvalues of its sub-
networks. Based on this fact, some researchers have inves-

Figure 1: Illustration of Cartesian product network G1□G2
consisting of two sub-networks G1 and G2 which have dif-
ferent connection delays τ1 and τ2, respectively.

tigated partial and full synchronization in Cartesian product
networks of coupled oscillators [14, 15, 16].

In this report, we investigate amplitude death in Carte-
sian product networks of delay-coupled oscillators. The
Cartesian product networks consist of two sub-networks
which have different connection delays with each other.
Therefore, the connection delays are not identical in the
whole networks. Even in such situation, the feature of
Cartesian product allows us to easily analyze the stability
of amplitude death. Furthermore, it is shown that the stabil-
ity of amplitude death is heavily depends on the topology
of the sub-networks.

The following notations are used throughout this report.
G = (V,E) is the graph consisting of set of nodes V and
edges E. Conversely, V(G) and E(G) represent the sets
of nodes and edges of the graph G, respectively. AG is
the adjacency matrix of graph G: if i-th and l-th nodes are
connected by an edge, then {AG}il = {AG}li = 1; otherwise,
{AG}il = {AG}il = 0. The matrix IN denotes the N × N unit
matrix. The imaginary unit is defined as j :=

√
−1.

2. Cartesian Product network of delay coupled oscilla-
tors

This section briefly introduces the Cartesian product net-
work consisting of two sub-networks. Then, we will ex-
plain the delayed coupled oscillators of the Cartesian prod-
uct network where the two sub-networks have different
connection delays.
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2.1. Cartesian product network

The Cartesian product network consisting of two
sub-networks G1 = (V(G1),E(G1)) and 　 G2 =

(V(G2),E(G2)) is denoted by G1□G2. The nodes set of
G1□G2 is given by V(G1□G2) = V(G1) × V(G2). Edge(
(v1, v2), (v

′

1, v
′

2)
)

is an edge in E(G1□G2) if v1 = v
′

1 and
(v2, v

′

2) ∈ E(G2) (or if v2 = v
′

2 and (v1, v
′

1) ∈ E(G1)).
Figure 1 shows an example of the Cartesian product net-
work. The adjacency matrix of the Cartesian product net-
work G1□G2 is given by

AG1□G2 = AG1 ⊗ In + Im ⊗ AG2 , (1)

where m and n are the number of nodes in sub-networks G1
and G2, respectively. The symbol ⊗ denotes the Kronecker
product.
2.2. Delayed coupled oscillators

Let us consider the delayed coupled oscillators of the
Cartesian product network G1□G2 illustrated in Fig. 1. The
dynamics of the oscillators are given by,

Żi(t) = (a + jω − |Zi(t)|2)Zi(t) + u(1)
i (t) + u(2)

i (t),
(i = 1, . . . ,mn), (2)

where Zi(t) ∈ C is the state variables of i-th oscillators.
a > 0 and ω > 0 respectively represent instability of the
fixed point Zi

∗ = 0 and the natural frequency of oscillators.
Each oscillator receives the input signal u(1)

i (t) and u(2)
i (t)

from sub-networks G1 and G2, respectively.

u(1)
i (t) = k

 1

d(1)
i

 mn∑
l=1

c(1)
i,l Zl(t − τ1)

 − Zi(t)

 ,
u(2)

i (t) = k

 1

d(2)
i

 mn∑
l=1

c(2)
i,l Zl(t − τ2)

 − Zi(t)

 , (3)

where k is the coupling strength. τ1 and τ2 denote the
connection delays in sub-networks G1 and G2, respectively
(see Fig. 1). Note that the connection delays would dif-
fer from sub-network to sub-network. c(1)

i,l and c(2)
i,l is (i, l)

elements of adjacency matrix AG1 ⊗ In and Im ⊗ AG2 , re-
spectively. d(1),(2)

i represent the degree of i-th oscillator in
sub-networks G1 and G2. The coupled oscillators (2)，(3)
have the homogeneous steady state[

Z∗1 , · · · ,Z∗mn
]T
= [0, · · · , 0]T . (4)

3. Linear stability analysis

Linearizing Eqs. (2) and (3) around steady state (4), we
obtain

żi(t) =(a + jω − 2k)zi(t) +
k

d(1)
i

mn∑
l=1

c(1)
i,l zl(t − τ1)

+
k

d(2)
i

mn∑
l=1

c(2)
i,l zl(t − τ2),

(5)

where zi(t) := Zi(t) − Z∗i is the perturbation from steady
state (4). Linear system (5) can be rewritten as

Ẋ(t) = (a + jω − 2k)X(t) + k(E1 ⊗ In)X(t − τ1)
+ k(Im ⊗ E2)X(t − τ2), (6)

where X(t) := [z1(t), · · · , zmn(t)]T . The matrices E1 :=
D−1
G1

AG1 and E2 := D−1
G2

AG2 denote the network topolo-
gies of sub-networks G1 and G2, where DG1 ∈ Rm×m

(DG2 ∈ Rn×n) is the diagonal matrix of oscillator’s degree,
i.e., its i-th diagonal element is the degree of i-th oscillator
on sub-network G1 (G2).

The stability of linear system (6) is governed by the roots
of the following characteristic equation.

G(s) :=det
[
(s − a − jω + 2k)Inm−

k
{
(E1 ⊗ In)e−sτ1 + (Im ⊗ E2)e−sτ2

}]
.

(7)

It is known that the matrices E1 and E2 can be diagonalized
as follows [17],

T−1
1 E1T1 = diag(ρ1, . . . , ρm),

T−1
2 E2T2 = diag(σ1, . . . , σn),

where T1 and T2 are transformation matrices. ρ1, . . . , ρm

and σ1, . . . , σn denote the eigenvalues of E1 and E2, re-
spectively. The matrices E1 and E2 in Eq. (7) can be simul-
taneously diagonalized by using the transformation matrix
(T1 ⊗ T2) as follows:

G(s) = det
[
(T−1

1 ⊗ T−1
2 ){

(s−a− jω+2k)Inm−k
{
(E1 ⊗ In)e−sτ1+(Im ⊗ E2)e−sτ2

}}
(T1 ⊗ T2)

]
= det

[
(s − a − jω + 2k)Inm−

k
{(

diag(ρ1, . . . , ρm) ⊗ In
)

e−sτ1

+
(
Im ⊗ diag (σ1, . . . , σn)

)
e−sτ2 }] .

This diagonalization allows us to separate the character-
istic Eq. (7) into mn modes,

G(s) =
m∏

p=1


n∏

q=1

g(s, ρp, σq)

 , (8)

where,

g(s, ρ, σ) := s − a − jω + 2k − k(ρe−sτ1 + σe−sτ2 ).

As a consequence, steady state (4) is stable if and only if
all the mn modes of Eq. (8) is stable.

For checking the stability of Eq. (8), we will focus on
roots of g(s, ρ, σ) = 0. The stability of Eq. (8) changes only
when the roots crosses the imaginary axis. Substituting s =
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Figure 2: Two Cartesian product networks A and B

jλ (λ ∈ R) into g(s, ρ, σ) = 0 gives us the following two
equations,

−a + 2k − kρ cos(λτ1) − kσ cos(λτ2) = 0,
λ − ω + kρ sin(λτ1) + kσ sin(λτ2) = 0. (9)

Solving Eq. (9) in terms of τ1 and τ2 yields the marginal
stability curves on the connection parameter (τ1, τ2) space
[7]. Moreover, in order to derive the stability region from
the marginal stability curves, we have to check the direction
of the roots crossing the imaginary axis. The direction can
be checked by the real part of ds/dτ2 at s = jλ,

Re
[

ds
dτ2

]
s= jλ
= Re

[
− jλkσe− jλτ2

1 + k
(
ρτ1e− jλτ1 + στ2e− jλτ2

) ] .
(10)

The positive (negative) sign of Eq. (10) denotes that the
roots crossing the imaginary axis from left to right (right to
left) as τ2 increases.

4. Numerical examples

For numerical examples, we consider two Cartesian
product networks A and B illustrated in Fig 2. Both of the
networks have the same number of oscillators and same
sub-network G2; that is, they have different sub-network
G1. The eigenvalues of E1 for Network A are ρ1,2 =

−0.5, ρ3 = 1. Those for Network B are ρ1 = −1, ρ2 =

0, ρ3 = 1. The eigenvalues of E2 are σ1 = −1, σ2 = 1.
Throughout this report, the parameters of oscillators (2)
and the coupling strength are fixed at

a = 0.50, ω = π, k = 2.0. (11)

Figure 3 shows the marginal stability curves and the sta-
bility region on the connection parameter (τ1, τ2) space.
The thin (bold) curves denote that when a parameter set
(τ1, τ2) crosses the curves with increasing τ2, one root of
g(s, ρ, σ) = 0 crosses the imaginary axis from left to right
(right to left). The shaded area shows the stability region
where all the roots of G(s) = 0 located on the left-half of
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Figure 3: The marginal stability curves (i.e., solid curves)
and the stability region (i.e., shaded area) of Networks A
and B illustrated in Fig. 2.

the complex plane. In other words, the local stability of
steady state (4) is guaranteed in this region.

Comparing Fig. 3(a) with Fig. 3(b), the region for Net-
work B is symmetry about the slanted line τ1 = τ2, while
it is not symmetry for Network A. Moreover, the region
for Network A has the range of τ1, which is between two
white dotted lines in Fig 3(a), such that we can use the long
connection delay τ2 of sub-network G2 to induce ampli-
tude death 1. It should be noted that long connection delays
never induce amplitude death if the connection delays are
identical (i.e., τ1 = τ2) in the whole networks [3].

Figure 4 shows the time-series data of the state variables
Re[Zi(t)] at points (a):(τ1, τ2) = (2.0, 2.0) and (b):(τ1, τ2) =
(0.75, 2.0) in Fig. 3(a). At t = 30, all the oscillators are
coupled. For point (a), the variables still oscillate after cou-
pling. For point (b), they converge onto steady state (4).

1We can use even a diffusive connection (i.e., τ2 = 0).
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(a) point (a): (τ1, τ2) = (2.0, 2.0)
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(b) point (b): (τ1, τ2) = (0.75, 2.0)

Figure 4: Time-series data of Re[Zi(t)] at point (a) and (b)
in Fig. 3(a).

5. Conclusion

This report has investigated amplitude death in Cartesian
product networks of delayed coupled oscillators, where two
sub-networks of the Cartesian product networks have dif-
ferent connection delays with each other. By using the fea-
ture of Cartesian product, we have easily analyzed the local
stability of the steady state. The analytical results were nu-
merically confirmed.
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