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Abstract—This report experimentally investigates am-
plitude death in a pair of oscillators coupled by a one-way
partial time-varying delay connection: the connection de-
lay in one direction is varied, but the connection delay in
the other direction is constant. Our circuit experiments
show that the one-way partial time-varying delay connec-
tion can induce amplitude death for long connection delay.
The analytical results agree with our experimental results.

1. Introduction

The dynamics of various physical, chemical, and engi-
neering systems can be mathematically modeled by cou-
pled oscillators [1]. In coupled oscillators, we observe vari-
ous nonlinear phenomena such as synchronization, spacial-
temporal chaos, chimera state, and so on. One of such phe-
nomena is amplitude death [2], which is a stabilization of
homogeneous steady state in diffusively-coupled oscilla-
tors. It is analytically shown that this phenomenon never
occurs in coupled identical oscillators [3]. However, if
there exists connection delay between oscillators, then am-
plitude death can occur even in coupled identical oscillators
[4]. Amplitude death induced by the connection delay has
been actively investigated in nonlinear science [2].
Amplitude death has been expected to suppress unde-

sired oscillations in engineering systems such as coupled
laser systems [5], dc micro grid [6], and coupled thermoa-
coustic oscillators [7]. This is because the usage of ampli-
tude death does not need feedback controllers for stabiliza-
tion. However, for implementation in real systems, ampli-
tude death has one critical problem: if the connection delay
is relatively long due to a practical constraint, then ampli-
tude death cannot be induced [4]. In order to overcome this
problem, the following three connections have been pro-
posed: a distributed delay connection [8], a multiple delay
connection [9], and a time-varying delay connection [10].
The time-varying delay connection would be easier to

be implemented and would not cost compared with the
other two connections [10]. The time-varying delay con-
nection has been implemented in electronic circuits [11],
and the topology and delay independent design procedure
of connection parameters has been proposed [12]. How-

Figure 1: A pair of oscillators coupled by a one-way partial
time-varying delay connection.

ever, all the connection delays have to be varied with high
frequency. Thus, this connection is difficult to be imple-
mented for large networks with a huge number of oscilla-
tors.
In order to defeat this difficulty, we first proposed a one-

way partial time-varying delay connection for a pair of os-
cillators, in which the connection delay in a direction is
varied, but that in the other direction is constant [13]. In
addition, we proposed a two-way partial time-varying de-
lay connection for networks, in which connection delays
between some oscillators are varied, but the others are con-
stant [12]. These partial time-varying delay connections
are obviously easier to be implemented in large networks;
however, to the best of our knowledge, there have been
few reports about experimental investigations on amplitude
death induced by the partial time-varying delay connec-
tions.
The present report experimentally investigates amplitude

death in a pair of oscillators coupled by the one-way partial
time-varying delay connection. The well-known double
scroll circuit is employed as the oscillator, and the connec-
tion delay is mainly implemented by peripheral interface
controllers (PICs) and DA converters. Our experiments
show that the one-way partial time-varying delay connec-
tion can induce amplitude death even for long connection
delay. The analytical results agree with our experimental
results.
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2. One-way partial time-varying delay connection

Let us consider a pair of m-dimensional oscillators (see
Fig. 1), {

ẋ(1,2) = F(x(1,2)) + bu(1,2)
y(1,2) = cx(1,2) , (1)

where x(1,2) ∈ Rm, y(1,2) ∈ R, and u(1,2) ∈ R are respectively
the state variables, the output signals, and the input signals
of 1-st and 2-nd oscillators. b ∈ Rm and c ∈ R1×m denote
the input and output vectors, respectively. We assume that
each oscillator has at least one unstable fixed point x∗ :
F(x∗) = 0. The input signals u(1,2) are given by

u(1) = k
{
y(2)τ(t) − y(1)

}
, u(2) = k

{
y(1)τ0 − y(2)

}
, (2)

where y(2)τ(t) := y
(2)(t−τ(t)) and y(1)τ0 := y(1)(t−τ0) are delayed

output signals. k > 0 denotes the coupling strength. τ0 > 0
is the constant delay, and τ(t) > 0 denotes the periodically
time-varying delay (see Fig. 1) around the nominal delay
τ0 with the amplitude δ ∈ [0, τ0),

τ(t) := τ0 + δ f (Ωt), (3)

where Ω > 0 is the frequency of a periodic sawtooth func-
tion f (x),

f (x) :=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
+
2x
π
− 1 − 4n if x ∈ [2nπ, (2n + 1)π)

−2x
π
+ 3 + 4n if x ∈ [(2n + 1)π, 2(n + 1)π)

,

n = 0, 1, 2, . . . .

We will consider the local stability of a homogeneous
steady state in a pair of oscillators (1), (2),

[
x(1)T , x(2)T

]T
=
[
x∗T , x∗T

]T
. (4)

Substituting the perturbation Δx(1,2) := x(1,2) − x∗ into
Eqs. (1), (2), it yields the dynamics around steady state (4),

Ẋ = {I2 ⊗ (A − kbc)} X + B1Xτ0 + B2Xτ(t), (5)

where A := {∂F(x)/∂x}x=x∗ is the Jacobian matrix, and

X :=
[
Δx(1)
Δx(2)

]
, B1 :=

[
0 0
kbc 0

]
, B2 :=

[
0 kbc
0 0

]
.

For sufficiently large Ω, the stability of linear time-
varying system (5) is guaranteed if liner time-invariant sys-
tem

Ẋ = {I2 ⊗ (A − kbc)} X+B1Xτ0+
B2
2δ

∫ t−τ0+δ

t−τ0−δ
X(s)ds, (6)

is stable [14] Thus, we will focus on the stability of sys-
tem (6) instead of system (5). The characteristic equation

of system (6) is given by,

G(s) :=
det
[
sI2m−{I2 ⊗ (A−kbc)}−B1e−sτ0−B2e−sτ0H(sδ)] = 0,

(7)

where

H(x) :=

⎧⎪⎪⎨⎪⎪⎩
sinh x
x if x � 0

1 if x = 0
.

Therefore, the local stability of steady state (4) is governed
by the roots of Eq. (7).
For checking the stability of characteristic Eq. (7), we

derive the marginal stability curves on the connection pa-
rameter (k, τ0) space. Substituting s = iλ (λ ∈ R) into
Eq. (7), we obtain,

G(iλ) = G+(λ)G−(λ) = 0, (8)

where

G±(λ) := det
[
iλIm − A + kbc ± ke−iλτ0

√
Φ(λδ)bc

]
,

Φ(x) :=

⎧⎪⎪⎨⎪⎪⎩
sin x
x if x � 0
1 if x = 0

.

By solving Eq. (8) in terms of k and τ0, we can derive
the marginal stability curves on the connection parameter
space [10]. Our stability analysis focuses on the local sta-
bility of the homogeneous steady state; hence, we cannot
deal with the global stability.

3. Experimental circuits

In our experiments, we deal with coupled double-scroll
circuits [15] (see Fig. 2),
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dv(1,2)1
dt

=
1
R
(
v(1,2)2 − v(1,2)1

)
− h
(
v(1,2)1

)

C2
dv(1,2)2
dt

=
1
R
(
v(1,2)1 − v(1,2)2

)
+ i(1,2)L + i(1,2)u

L
di(1,2)L
dt

= −v(1,2)2

, (9)

where v(1,2)1 [V] and v(1,2)2 [V] denote the voltages of capac-
itors C1 [F] and C2 [F], respectively. i(1,2)L [A] is the current
through inductor L [H]. The current h

(
v(1,2)1

)
[A] through

the nonlinear resistor is given by

h(v) := m0v +
1
2
(m1 − m0)

∣∣∣v + Bp∣∣∣ + 12(m0 − m1)
∣∣∣v − Bp∣∣∣ .

The two circuits are coupled through the coupling resistor
r. Thus, the coupling signals are given by

i(1)u =
1
r
(
v(2)2,τ(t) − v(1)2

)
, i(2)u =

1
r
(
v(1)2,τ0 − v

(2)
2

)
, (10)
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Figure 2: Experimental circuit diagram.

where v(2)2,τ(t) := v
(2)
2 (t − τ(t)) and v(1)2,τ0 := v

(1)
2 (t − τ0) are the

delayed voltages. These delayed voltages are generated by
the delay units in Fig. 2, which are implemented by PICs
(PIC18F2550) and DA converters [11].
The non-dimensional form (1), (2) of coupled double

scroll circuits (9), (10) is given with

F(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
η {x2 − x1 − g(x1)}
x1 − x2 + x3
−γx2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , b =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , c =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

, (11)

where

x1 :=
v1
Bp
, x2 :=

v2
Bp
, x3 :=

iLR
Bp
, k =

R
r
,

η :=
C2
C1
, γ :=

R2C2
L
, a := m1R, b := m0R,

g(x) := bx +
1
2
(b − a) {|x − 1| − |x + 1|} .

Note that in Eq. (11), the non-dimensional time t/(RC2) is
used instead of the real time t. The double scroll circuit (11)
has the three equilibrium points, x∗± :=

[
±p 0 ∓p

]T
and

x∗0 := 0, where p := (b − a)/(b + 1). Here, we focus on the
stability of x∗+. The Jacobian matrix around x∗+ is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−η(b + 1) η 0

1 −1 1
0 −γ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

4. Experimental results
The parameters of circuit (9) are fixed at

C1 = 0.1 × 10−6 F, C2 = 1.0 × 10−6 F,
L = 180 × 10−3 H, R = 1, 800 Ω,
Bp = 1.0 V, m0 = −0.4 × 10−3, m1 = −0.8 × 10−3. (12)
The circuit with parameter (12) shows the well-known dou-
ble scroll attractor [15]: a resonant frequency of each os-
cillator at the equilibrium point is approximately 3.45. The

frequency of time-varying delay (3) is fixed at a large value
Ω = 23.
Figure 3 shows the stability regions (i.e., shaded areas)

for (a) δ = 0 (i.e., time-invariant delay connection) and
(b) δ = 0.35 (i.e., one-way partial time-varying delay con-
nection) on (k, τ0) space. These regions are derived from
the marginal stability curves which are solutions of Eq. (8).
Comparing the region in Fig. 3(a) with that in Fig. 3(b), we
see that the one-way partial time-varying delay connection
expands the region substantially. Especially, for k > 7.1
in Fig. 3(b), there are no curves; that is, we can use long
connection delay τ0 to induce amplitude death.
The symbol© (×) in Fig. 3 denotes the occurrence (non-

occurrence) of amplitude death experimentally. It can be
confirmed that most of the experimental results (i.e., sym-
bols © and ×) agree with our analytical results (i.e., the
shaded areas). A few parameter sets of experimental re-
sults do not agree with the analytical results because of pa-
rameters mismatch between the two oscillators. Figure 4
shows the time-series data of the voltages v(1)1 and v(1)2 at
point A: (k, τ0) = (7.80, 1) and point B: (k, τ0) = (2.85, 3)
in Fig. 3(b). The two double-scroll circuits are coupled at
t = 60 ms; that is, the switch SW in Fig. 2 is turned on. For
point A, the voltages converge onto the equilibrium point
after coupling. On the other hand, for point B, the voltages
continue to oscillate even after coupling 1.

5. Conclusion

This report has experimentally investigated amplitude
death induced by a one-way partial time-varying delay con-
nection in a pair of double scroll circuits. It has been ex-
perimentally verified that the one-way partial time-varying
delay connection can induce amplitude death even for long
connection delay. Our experimental results agreed well
with analytical results.

1The time-series data in Fig.4(b) seems to be a periodic solution. Since
our results are based on the local stability of steady state (4), we cannot
deal with global behavior, such as the periodic solution.
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(a) δ = 0 (time-invariant delay connection)
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Figure 3: Stability regions (i.e., shaded areas) for a pair
of double scroll circuits. The symbol © (×) denotes the
occurrence (non-occurrence) of amplitude death in our ex-
periments (Ω = 23).
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