O

2016 International Symposium on Nonlinear Theory and Its Applications,
NOLTAZ2016, Y ugawara, Japan, November 27th-30th, 2016

Spiking neural network simulation on FPGAs
with automatic and intensive pipelining

Masato Neishi
Takashi Kohno

Taro Kawao'

Tomohiro Okamoto

Amir Masoud Gharehbaghi
Masabhiro Fujita

University of Tokyo, Japan
TNow at Renesas Electronics, Japan

Abstract—There are lots of scientific interests in the be-
haviors of large spiking neural networks. One way to un-
derstand the behaviors is to simulate them as fast as possi-
ble with customized hardware, such as FPGA. This paper
shows highly pipelined implementations of spiking neu-
ral networks on FPGA using a high level synthesis tool.
Our accelerator allows 256 neurons to operate at 280 times
faster than real time brain operations, which is around 8
times faster than the previous reports on similar directions.
It is also designed for a multi-FPGA implementation which
can simulate up to 3,000 neurons.

1. Introduction

There have been a series of researches on the use of spe-
cialized and customized hardware for speeding up particu-
lar scientific computations. Completely customized hard-
ware, such as ASIC (Application Specific Integrated Cir-
cuit) implemented in silicon does not have any flexibil-
ity after fabrication, and there is no way to modify oper-
ations even if the target computations need to be changed.
On the other hand, programmable and reconfigurable hard-
ware, such as FPGA (Field Programmable Gate Arrays),
can change their functionality at anytime, and so it is one
of the ideal devices which realize the customized comput-
ing machines.

In this paper we show highly pipelined implementation
of spiking neural network simulation on FPGA. Neural net-
works are mathematical models on the functionality of neu-
ron and synapse, and consist of nodes for neurons and
edges for synapses. By changing the weights for edges
based on learning, various information processing can be
realized. By using sufficiently large networks, robust com-
puting, such as computations under various noises, can be
achieved for pattern recognition, data classification, and
others. There have been developed many FPGA-based
spiking neuronal network simulators [1][3][7] [6][2][4].

Here, we use DSSN network model [5] which uses rela-
tively simple computations for ease of hardware implemen-
tations but reproduces the behaviors of biological neural
networks with sufficient accuracy. Our work is based on the
previous works [6][7] but improves the simulation speed by
8 times and also can deal with larger networks. The previ-
ous works [6][7] realize the same speed as human brain up

to around 1,500 neurons. The scope of our research covers
the accelerated simulation of neuronal networks composed
of tens of thousands of neurons. This number is compara-
ble to that of the insect brains which realize intelligent and
adaptive processing. Thus, speeding up simulations of that
size is practically very important.

In our framework, the highly pipelined implementa-
tions of spiking neural network simulations are generated
through the use of a high level synthesis tool, called Max
Compiler [8]. High level synthesis tools can automati-
cally refine designs in high level, such as in C or Java,
into the ones in RTL (Register Transfer Level). Once de-
signs in RTL are obtained, there are established tool flows
by which FPGA implementations can be automatically ob-
tained. Max Compiler can introduce intensive pipelined
designs utilizing their special IPs (pre-designed functional
units). The numbers of pipeline stages can be more than
1,000, which means more than 1,000 data parallel op-
erations are processed simultaneously. With the use of
high level synthesis tools, high performance neural net-
work simulation on FPGA can be relatively easily realized.

The rest of the paper is organized as follows. In the next
section the neural network model we are going to imple-
ment is reviewed. Then the previous works are briefly ex-
amined in the following section. Our proposed implemen-
tation is presented next with its experimental results. The
final section gives concluding remarks.

2. Target neural network model

In our target model, there are N neurons which are con-
nected to one another through synapse networks as shown
in Figure 1. All neurons are connected to all the other neu-
rons. For each neuron, the input from synapses to the neu-
ron is computed as shown in the expression 5. The com-
putations inside a neuron is shown in the expressions 1, 2,
and 3. The output from a neuron to synapses is computed
as shown in the expression 4. The learning on the spik-
ing neural network is defined in the expressions 6 and 7.
Some of the expressions originally defined as differential
equations are converted into the corresponding difference
equations.

Here we implement the spiking neural network model
called DSSN model [5]. A spike is defined as a narrow

- 202 -

Synapse network

Figure 1: Target neural network

impulse with some amount of voltage swing. The vari-
ables v,n, and ¢ are introduced for the modeling. By
manipulating the variables, v and n, spikes are generated,
and the variable, g adjusts the intervals of spikes. Iy is
a constant and I, is the weighted sum of synaptic in-
puts to a neuron and computed as shown in the expres-
sion 5. While v is above a threshold, [T] is 1 and else
[T] is 0. ¢ and 7 are time constants, and the others,
V0, &, Gy, Ap, by, by, Cpy ks ki, 1y, 1, my,,my,, are control
parameters for the behaviors of spikes. For a neuron, I,
is the input and v is the output.

Wi+ Af) = () + A
.

e =07 +co—n =g+ I+ Lin) - (v < 0) 0
(ap(v —b) +c,—n—q+1Ip+ Im-m) (v=0)
n(t + Ar) = n(t) + At%
y {(kn(v - 1,,)22+ my=n) (v<r))
(kpv =12 +my —n) (27
gt + A1 = () + Aé (v = vo — aq) 3)

The model of synapse is based on [9], and it is defined
with the expressions, 4 and 5.

La+dn =1+ Arx] CE=HOATT=D
—BI(1) ([T]1=0)
N .
Ij‘tim = cz ‘/thl_{ (5)
=1

As for more details, please refer to [5].

2.1. Hebbian learning

The Hebbian learning is a learning method based on tim-
ings of spikes. When neuron i and j generate spikes in a
similar timing, neuron j’s influence on neuron i, W;;, is
strengthened. This is represented as follows.

AW = A, exp (_|At|) (6)

Ty

o]
s T Jat (_% DSSN
\ccumulator
N > —>| . 1
Is(16] Unit Unit v
w T vi1]
i) Loarni
earning
v[16] Unit Is[1]
SNNM(1]
1o016]
ey Jat é DSSN
\ccumulator "
is116] Unit > Unit voel
w T v[16]
V1]
] A Learning 10161
vi16] Unit
SNNM[16]

Figure 2: Circuit architecture of the previous work [7]

In the case that a spike generates an influence on both
directions of increasing and decreasing values, the expres-
sion becomes as follows.

AW = A, exp(_mtl) —-A_ exp(ﬂ) @)

T+

where At is the time difference between the spikes and
A,,A_, 1., and T— are constants.

In the experiments, we use the above computation for the
learning.

3. Previous work

DSSN model was first implemented on FPGA in [7]. It
is based on the circuit architecture shown in Figure 2, and
it runs in the pipelined way shown in Figure 3. The FPGA
chip used is Virtex 6 XC6VSX315T. The parameter values
are shown in Figure 2. Some scalar multiplications are re-
placed with additions and so the number of multiplications
is less than what are shown in the expression 1-4.

In this implementation, according to [7] Accumulator
Unit can generate one output every 4 cycles. As shown in
Figure 3, DSSN Unit and Silicon Synapse Unit actually op-
erate only 3% of the entire computation time. Nevertheless
Accumulator Unit and other units must exist for parallel
computations, as Accumulator Unit generates outputs only
at specific small numbers of cycles.

4. Our implementation

In this section we introduce our implementation of the
DSSN model and its networks. First we show the FPGA
system and associated high level synthesis tool that we use
for our implementation.

4.1. Target FPGA system

The FPGA system is connected to a host Xeon-based
PC through PCI express as shown in Figure 4. The FPGA

- 203 -

Cycles
s 7009 1010 1011 1012 1073 1074 1015 1022[1025 1026 1027 1028 1029 1030
2T l2lslals el[7[Tt

O T I
51 (356 2
1 [z a s (e 7

03[13 [14 [15 [- 1 ~ 12 [13 [14 [15 [16
ST
s2

[A S E e A R A

< [256 [om [242] — [255 | 256|241 | — [256 [oa1 242 243

D1 [255] 258 [oa [222

16 [0z |25 255 [356 [
b3 [253] 254 255

SN
ofwfw

— 1415 [16

B
2

wofw|sfo
wlslalo
@
B
&
B

Units

TiEse] 241 [24z | 24 | 2aa [245 | 24
= 255 1286 241 [242 [243] 224 [235

k6|85

Figure 3: Pipeline operations of the previous work [7]

Workstation system
FPGA board
DRAM DRAM
48GB 24GB
[38c8/s
CPU FPGA
Xeon X5650 PCI Express Virtex6 SX475T
2GB/s

Figure 4: Target FPGA sytem

board has Virtex 6 XC6VSX475T and 24GB of DRAM
memories. The host PC download the FPGA configura-
tions and then host PC and FPGA can run at the same time
with possible communication. In our implementation, af-
ter the DSSN models and networks are downloaded into the
FPGA, spiking neural networks are simulated on the FPGA
board only. After finishing all simulations, the results are
transferred to the host PC.

We use a high level synthesis tool, Maxcompiler [8] from
Maxeler. It can generate highly pipelined VHDL codes
from data flow graphs represented in Java syntax. The
VHDL codes are further compiled by Xilinx tools. Max-
compiler does not accept any conditional statements. The
inputs to the compiler must be purely data flow graphs for
highly pipelining. So, the conditional statements shown in
the expressions (1-2) are manually converted into the ones
which always compute both cases and selecting the right
ones through multiplexers. Maxcompiler can accept the
target clock speed. The numbers of pipeline stages can eas-
ily exceed 1,000 in typical compilations including in this
implementation.

4.2. Overall architecture

We are following the previous implementation [7], but
improved the performance by 8 times through more inten-
sive pipelining as well as the use of larger FPGA chips.
The overall data flow graph for the computation is shown
in Figure 5. The inputs to the circuit are the initial val-
ues of I;, W and several control signals, and the outputs are
updated I;.

Simulations are performed based on the expressions 1-5
for 64 steps with a fixed value of W, and then learnings are
performed for 2 steps. This process is repeated until the
value of W does not change for some time. When there are
N neurons, 1 step is computed with N + 12 clock cycles.

Timing[i] -

I 2

Learning

| Learning

Istim
Difference

Equations |
D-%

v,n,q,Is

Weighted Average

Figure 5: Overall data flow of the computation

Cycles
253] 254] 255 [256] 257] 258 259 | 260] 261

N

— |~
NI

— [oo |]+

I I ENITI B

25416 [17 [18 [19 | 2
255| 15 | 16 [17 [18 [1
256] 14|15 [16 [17 [1
Unit[i]

[] Weighted Average
| Difference Equations

Figure 6: Operations in each cycle when N=256

Figure 6 shows the case of N=256.

The entire circuit is decomposed into the weighted sum
unit, which computes the expression 5, the difference com-
putation unit, which computes the expression 1-4, the
learning unit, and the storage unit. These are different from
Figure 2.

The weighted sum unit receives 2N of Wij as inputs,
and so for speedy computations Wij are stored in the block
RAM in the FPGA chip.

The difference computation unit operates on the vari-
ables, v, n, g, I;, which are also stored in the block RAM.
The learning unit and the storage unit are checking when a
spike happens and use it for learning.

4.3. Fast computation of weighted sum

The computation for the expression 5 dominates the to-
tal computation time. In the previous implementation [7],
Accumulator unit does this computation, but it can gener-
ate only one output at every 4 cycles, which is the speed
bottleneck.

On the other hand, in our implementation, we introduce
the pipeline operations shown in Figure 6 so that more
pipeline stages can be introduced as the numbers of neu-
rons to be simulated increases. The computation of Istim'
takes N + 1 cycles, and then 1! is computed in 11 cycles.
This is pipelined with respect to i. The computations in
terms of dataflow are aligned for easier layout inside the
FPGA chip. The exception on this is the communication

-204 -

Istim(i]

WIIlN]

Is[N]

Figure 7: Structure of weighted sum unit

Table 1:
N 256 512 768 Total in chip
LUTs 19,515 58,298 109,443 297,600
FFs 39,934 101,215 168,136 297,600
DSPs 268 524 780 2,016
BRAMs 522 1,034 1,767 2,128

from the difference computation unit to the storage unit.
Although there are a number of wires for this communi-
cation, right now there is no significant delay caused from
them.

4.4. Bit width

Time interval, At, and bit-widths of variables are impor-
tant parameters, as they influence the simulation time and
accuracy. A software simulator has been implemented in
C to determine those values. The results say At should be
3/8000, and v, n, g, I stim needs 18 bits and I, W needs 16
bits, which are used in our FPGA implementation.

4.5. Experimental results

The Java description based on the above dataflow has
around 200 logical lines of codes. It has been synthesized
to the FPGA netlists by Max Compiler [8], which runs at
200MHz. The synthesized results are shown in Table 1.
There can be up to 768 neurons in one FPGA chip.

Compared with the existing implementation [7], the
number of cycles is reduced to 1/4 and clock speed be-
comes double, and so in total around 8 times speed up has
been observed. Our implementation is 280 times faster than
the actual brain.

5. Concluding remarks

We have presented our single FPGA chip implemen-
tation of DSSN network models which runs at 200MHz.
When there are N neurons and we prepare p computing
units whose details are shown above, the computation com-
plexity is proportional to N? and so the computation time
becomes N?/p. With the largest Virtex6 chip from Xilinx,
we can implement 768 computing units in a single chip.

We are working on implementations with multiple
FPGA chips by decomposing the dataflow graph. With 4

Table 2: Parameter values

Parameter Value Parameter Value
a, 8.0 ap 8.0
b, 0.25 b, 0.25
Cn 0.5 Cp 0.5
k, 2.0 k, 16.0
Pn _2—2 _ 2—4 Py 2—5 _ 2—2
qn -0.705795601 qp -0.6875
©® 1.0 T 0.003
r -0.205357142 Iy -0.205
c 0.060546875 At 0.000375
Ay 2-6 A_ 2774278
T, 11.25 T_ 22.5

FPGA boards which are interconnected by a ring network,
we should be able to simulate around 3,000 neurons at al-
most the same speed as the case of single FPGA chip.

References

[1] K. Cheung et al.: NeuroFlow: A General Purpose Spiking
Neural Network Simulation Platform using Customizable
Processors,” Frontiers in Neuroscience, Vol. 9, Article 516,
pp-1-15, Jan. 2016.

[2] S. W. Moore, P. J Fox, S. J. Marsh, A. T. Markettos, A.
Mujumdar: Bluehive - a field-programable custom com-
puting machine for extreme- scale real-time neural net-
work simulation, IEEE 20th Annual International Sympo-
sium on Field-Programmable Custom Computing Machines,
Toronto, 2012.

[3] H. T Blair, J. Cong, D. Wu: FPGA simulation engine for
customized construction of neural microcircuits, IEEE/ACM
International Conference on Computer-Aided Design, Nov.
2013.

[4] D.B. Thomas, W. Luk: FPGA accelerated simulation of bio-
logically plausible spiking neural networks, /7th IEEE Sym-
posium on Field Programmable Custom Computing Ma-
chines, 2009.

[5] T. Kohno and K. Aihara: Digital spiking silicon neuron:
concept and behaviors in GJ-coupled network, Proceedings
of International Symposium on Artificial Life and Robotics,
Beppu, OS3-0S6, 2007.

[6] Jing Li, Yuichi Katori and Takashi Kohno: An FPGA-based
silicon neuronal network with selectable excitability silicon
neurons, Frontiers in NEUROSCIENCE, 2012, Volume 6,
Article 183.

[7] Jing Li, Yuichi Katori and Takashi Kohno: Hebbian Learn-
ing in FPGA Silicon Neuronal Network, iProceedings of the
Ist IEEFE/IIAE International Conference on Intelligent Sys-
tems and Image Processing, 2013.

[8] MaxCompiler | Maxeler Technologies. http://www.
maxeler.com/products/software/maxcompiler/.

[9] Destexhe, A., Mainen, Z. F., and Sejnowski, T. J.(1998).
“Kinetic models of synaptic transmission,” in Methods in
Neuronal Modeling, eds C. Koch and 1. Segev (Cambridge,
FL:MIT Press),1-25.

- 205 -

