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Abstract—In neural networks research, neural informa-
tion is assumed to be generally represented by a spatio-
temporal firing pattern of neurons. When the neurons gen-
erate synchronized spike trains with each other, their ca-
pability of information representation is severely limited,
because all the neurons represent merely a single temporal
pattern. On the other hand, when the neuronal activities
become desynchronization, the network may exhibit much
more variations of their firing patterns, increasing the infor-
mation processing capability. The aim of the our study is
to consider a way how to avoid such synchronized neuronal
firings that degrade the information processing capability.
First, as a typical situation to induce neuronal synchrony,
we introduce common inputs to a feed-forward neural net-
work. Then, to suppress the synchrony, heterogeneity is
introduced to inhibitory inputs. Using an electric circuit,
we verify that the heterogeneous inputs indeed give rise to
asynchronous firings among the electronic neurons.

1. Introduction

The asynchronous irregular activity of the neurons in
cortical networks can be spontaneously maintained ongo-
ing firings without external stimuli, which is observed in
vitro [1] and in vivo [2]. The various information pro-
cessing, as a asynchronous irregular state of the cortex,
including sensory perception [3], memory [4], signal pro-
cessing [5] and transmissions [6] in neural networks is re-
ported. To elucidate the underlying mechanism for the
cortical network to sustain the spontaneous asynchronous
state, the random network with balanced excitatory and in-
hibitory inputs realizes the asynchronous firing in theoret-
ical studies [7]. In the experiment, entropy is maximum
under the asynchronous irregular firings by the balanced in-
puts [8]. Moreover, the asynchronous firings generate var-
iously spatio-temporal patterns of a neural activity in the
network [9]. The spatio-temporal patterns are brain oper-
ations that generate adaptive external inputs. We consider
that the asynchronous firing takes information processing
capability. When the neural activities synchronized with
each other, their capability of information representation is
severely limited, because all the neurons represent merely
a single temporal pattern.

To avoid such neural activities that degrade the infor-

mation processing capability, we firstly explore underlying
mechanism of neural synchronization. The synchronous
firings were observed when the neurons were injected by
common inputs with each other [10, 11]. The our study
showned that inhibitory common inputs give rise to syn-
chronous firings a feed-forward model with leaky integrate-
and-fire neurons based on the physiological experiments
[12]. In addition, highly heterogeneous inhibitory post-
synaptic potentials (IPSPs) was proposed to suppress their
strong synchronization [12]. The introduction of hetero-
geneous IPSP amplitudes can generate uncorrelated inputs
and then the firing pattern can be desynchronized [12].

This paper is to implement a electronic circuit that gives
rise to asynchronous firings to avoid synchronous firings
induced by inhibitory common inputs. First, using elec-
tronic circuit with common inputs, we reproduce a typical
situation to induce neuronal synchrony. Next, to suppress
the synchrony, we adjust inhibitory inputs to heterogene-
ity from homogeneity. We verify that asynchronous firings
among the electronic neurons can be induced by the het-
erogeneous inputs.

2. Method

2.1. Electronic neuron circuit

The axon-Hillok circuit in the electronic neuron circuit is
an analog circuit originally proposed by Mead (Fig.1) [13].
The axon-Hillok circuit imitates the simple dynamic of
neuron with leaky integrate-and-fire model. The input cur-
rent Ii(t) is stored linearly into the membrane potential vi(t)
of i th electronic neuron on the capacitor (C1, 1µF) until
the membrane potential exceeds threshold Vthr. The stored
membrane potential vi(t) is released by n-MOS transistor
(M1) and the voltage Vlk [14]. The voltage Vlk is set to
1.2 V. When the membrane potential vi(t) reaches thresh-
old Vthr, the output voltage Vout quickly change from 0 to
Vdd and the electronic neuron generate the spike. The spike
can be detected by the sigmoid function, which consists
of n- and p-MOS transistors (M2-M5) and capacitor (C2,
47µF). Then a gate voltage of n-MOS transistor (M6) is
high by the on-state of the output voltage Vout. The n-MOS
transistor (M6) comes into an on-state from an off-state by
the high gate voltage, and then the membrane potential v(t)
with a full charge is released to ground and the output volt-
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age Vout swings back to 0 V. When the membrane potential
v(t) is the reset potential, the n-MOS transistor (M6) return
to an off-state from an on-state and the cycle repeats.

The membrane potential in neurons (vi(t)) is measured
by the oscilloscope (Keysight: DSOX2104A). The func-
tion generator of arbitrary current (Keysight: N6784A) can
inject into the electronic neurons.
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Figure 1: Circuit diagram of electronic neuron: The param-
eters on electronic neuron are set to C1 = 1µF, C2 = 47µF,
Vpw = 1.6V , Vlk = 1.2V , and Vth = 5V , respectively.

2.2. Input current on electronic neuron

In neural network, it is a generally considered that re-
current networks are composed of two types neurons (ex-
citatory and inhibitory neurons). To simplify recurrent net-
work, we set a feed-forward network that has excitatory
and inhibitory neurons in a first layer and 10 neurons in
a second layer (Fig. 2A). The neurons in the second layer
generate synchronous firings by the input current Ii(t) in-
cluding inhibitory common inputs [11]. The common in-
put current depends on the spikes and synaptic weights of
excitatory and inhibitory neurons in first layer.

The input currents Ii(t) on the electronic circuit are hard
to set, because we adjust a number of coupling strengths
more than neurons and we prepare many electronic neurons
in first layer. Here, the input current is set to the ensembles
of synaptic weights and spikes generated by all neurons in
the first layer (Fig. 2B). Concretely, the current is combined
with positive and negative pulse waves with a width of 0.01
sec for excitatory and inhibitory inputs, respectively. The
input current Ii(t) injected into output neurons is given by

Ii(t) = Wi,E

∑
k

δ(t−tE,k)+Wi,I(t)
(∑

s

δ(t−tI,s)+
∑

c

δ(t−tI,c)
)
,

(1)
where the indices E and I are for excitatory and inhibitory
neurons, respectively. δ(t) represents the delta function,
Wi,n and tn,b are the strengths of excitatory and inhibitory

inputs and b-th spike from the neurons in first layer, re-
spectively. Excitatory inputs generate independent Poisson
spike trains (red in Fig.2), whereas inhibitory inputs in the
first layer generate independent Poisson spike trains (blue
in Fig.2) and shared Poisson spike trains (green in Fig.2).
We conduct experiments for 20 sec using the 10 electronic
neurons and the 10 kinds of input currents.
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Figure 2: Schematic imagination of input currents on the
electronic neuron. (A) Imagination of a feed-forward net-
work with two layers. In the network, Excitatory (triangle)
and inhibitory neurons (circle) in the first layer are con-
nected to 10 neurons in a second layer. Excitatory neurons
in the first layer generate independent Poisson spike trains
(red), whereas inhibitory neurons in the first layer generate
independent Poisson spike trains (blue) and shared Poisson
spike trains (green). (B) Input current implemented on the
electronic neuron corresponding to (A).

2.3. Description of synchronous firing

The level of synchronous firing in the output neurons,
we evaluate the Cross-correlogram (CCG). We calculate
CCG as a histogram of inter-spike intervals for all pairs
among electronic neurons. The time lag was set to the
range between -5 sec and 5 sec with an increment of 1
sec. If the neural activity can be synchronized with each
other, the CCG appears with a sharp peak at zero time lag,
whereas asynchronous firings indicate the existence of the
CCG with a flat structure.
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Figure 3: Effect of inhibitory common inputs on syn-
chronous firings of the electronic neuron: (A) Raster plots
corresponding to the case that no common inputs ( c =
0 ) were injected. Spikes of electronic neurons are indi-
cated. (B) Raster plots corresponding to case that the ratio
to shared inputs c is set to 0.77. (C,D) The CCG histograms
corresponding to (A,B), respectively.

3. Results

3.1. Experiment with synchronization induced by com-
mon inputs of inhibitory current

For the desynchronization, we first set synchronous fir-
ings on the electronic neurons by inhibitory common in-
puts. Then, we introduce a network mechanism that re-
duces the correlated inhibitory inputs.

The parameters of input current Ii(t) are defined as
strengths and frequencies of excitatory and inhibitory in-
puts. The mean strengths of excitatory and inhibitory in-
puts are constant for Wi,E = WE = 1 mA and Wi,I(t) = WI

= -1.25 mA, respectively. Moreover, RE = 8 Hz indicate
the frequency of independent Poisson spike trains for exci-
tatory inputs, whereas inhibitory inputs are classified into
independent Poisson spike trains RII and shared Poisson
spike trains RcI . The frequency of inhibitory inputs RI is
defined as the summation of each frequency RII and RcI ,
and RI = 4 Hz is always constant in all experiments. To
constrain correlated spike trains of inhibitory neurons, we
introduce the ratio to shared spikes c = RcI/RI .

The raster plots under the two states with c = 0 and c =
0.77 are shown in Fig. 3. As comparing correlated inputs c
= 0.77 (Fig. 3B) with uncorrelated inputs c = 0 (Fig. 3A),
synchronous firing with c = 0.77 occurs than that with c
= 0. As shown in CCG, the peak of CCG for uncorrelated
inputs (Fig. 3C) is less than correlated inputs (Fig. 3D). The
result is that the synchronous firings can be reproduced by
the correlated inhibitory inputs on the electronic neurons.

Figure 4: Schematic imagination of heterogenous input
currents on the electronic neuron. Corresponding to Fig
2B, the strengths of inhibitory inputs are lognormally dis-
tributed.

3.2. Experiment with desynchronized firings induced
by heterogeneous inputs of inhibitory current

In the previous subsection, we showed that synchronous
firings are generated by high common inputs. We con-
duct the experiment with desynchronization under the c =
0.77, which induce synchronous firings in electronic neu-
rons. To suppress the synchronous firings, the strengths of
inhibitory inputs Wi,I(t)=wi are distributed such that log-
normal distribution has high heterogeneity (Fig. 4);

p(wi) =
exp[−(log wi − µ)2/2σ2]

√
2πσwi

, (2)

where we set the mean of the distribution Wi and the value
σ, respectively [15]. Once their parameters Wi and σ are
decided, we can obtain the parameter µ = log(Wi) − σ2/2.
The mean of the distribution Wi = -1.25 mA keeps the same
value among experiments.

As shown in the raster plots with current strengths under
the constant σ = 0 (Fig. 3B), the synchronous firings still
remains, whereas the firing pattern is asynchronous under
lognormal distribution with σ = 3 (Fig. 5A). We also un-
derstand that the peak of CCG exists under the constant
(Fig. 3D), while the CCG disappears with a sharp peak
under the lognormal distribution (Fig. 5B). The implies is
that the highly heterogeneous strengths of inhibitory inputs
have an impact on desynchronization.

4. Discussion

We implemented the electronic circuit that is mimics the
neural activity proposed by Mead [13] and we introduced
an input current injected into a neuron in output layer to
the highly correlated inhibitory current. As increasing the
ratio to shared inputs, we confirmed that the neurons in
output layer are synchronized with each other. To break
the highly correlated inhibitory current, we changed to het-
erogeneous strengths of inhibitory current. The input cur-
rent can reduce the correlated inhibitory inputs and then
the asynchronous firings can be observed on the electronic
circuit.
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Figure 5: Effect of standard deviation of inhibitory
strengths on the electronic neuron. The proportion to
shared inputs c is set to 0.77. (A) Raster plot represents
spikes of electronic neurons under he inhibitory inputs dis-
tributed as lognormal distribution withσ = 3. (B) The CCG
histograms corresponding to (A).

We consider that the asynchronous firings on the elec-
tronic neuron are more information capacity than the syn-
chronous firings. It is reported that the spontaneous asyn-
chronous firing activity gives rise to the maximum infor-
mation capacity in the physiological experiments [8]. The
pathological synchronous firings that may relate to epilep-
tic seizare [16] reduce information capacity because all the
neurons represent merely a single neural activity. In the our
future, we discuss the relationship between the pathologi-
cal synchronous firings and information capacity on elec-
tronic neurons.
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trout and N. N. Urban: “Correlation-induced synchro-
nization of oscillations in olfactory bulb neurons”,
The Journal of neuroscience, 26, 14, pp. 3646–3655
(2006).

[12] H. Kada, J.-n. Teramae and I. T. Tokuda: “Effective
suppression of pathological synchronization in corti-
cal networks by highly heterogeneous distribution of
inhibitory connections”, PLoS Comput Biol (2016).

[13] C. Mead: “Analog VLSI and Neural Systems”,
Addison-Wesley (1989).

[14] G. Indiveri, E. Chicca and R. Douglas: “A vlsi array
of low-power spiking neurons and bistable synapses
with spike-timing dependent plasticity”, Neural Net-
works, IEEE Transactions on, 17, 1, pp. 211–221
(2006).

[15] J. Chapeton, T. Fares, D. LaSota and A. Stepanyants:
“Efficient associative memory storage in cortical cir-
cuits of inhibitory and excitatory neurons”, Proceed-
ings of the National Academy of Sciences, 109, 51,
pp. E3614–E3622 (2012).

[16] D. A. McCormick and D. Contreras: “On the cellu-
lar and network bases of epileptic seizures”, Annual
Review of Physiology, 63, 1, pp. 815–846 (2001).

- 341 -


