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Abstract—In this paper we apply a method known as
Koopman Mode Decomposition (KMD) to data on simu-
lated wind power outputs. We propose a new index which
characterizes the smoothing of total output from multiple
wind turbines or farms, through the spectral decomposition
achieved via KMD. The index is experimentally exempli-
fied via application to data where the maximum distance
between measurement locations ranges from kilometers to
hundreds of kilometers. Data on wind speeds from weather
predictions obtained with CReSS (Cloud-Resolving Storm
Simulator) are used together with a standard power curve to
simulate outputs of wind turbines/farms. Results show that
KMD reconstructs the wind farm output well by a set of
modes, and that the smoothing resembles the conventional
index based on power spectral densities for some cases.
Furthermore, it is demonstrated with the KMD-based in-
dex that the smoothing on hour-scale for distributed wind
farms in Japan exhibits similarity to the improved smooth-
ing observed by distributing turbines over a larger area in a
wind farm.

1. Introduction

In a system with large penetration of electric power from
intermittent energy sources such as wind, it is important
to distribute the generation over a large geographical area
to smoothen the total power generation. It thus becomes
important to quantify the coherence of power generation at
different locations when planning a suitable distribution of
renewable power generation.

Here we will look at the smoothing of aggregated wind
power, which has previously been addressed in e.g. [1–3].
In particular, [1] describes a way to estimate the Fourier
spectrum of the total output of multiple turbines via the
spectrum of a single one. Smoothing of output power
from a Wind Farm (WF) through Power Spectral Densi-
ties (PSD) is also discussed in [2], where the authors ana-
lyzed data in Japan. In [3], a statistical analysis of correla-
tion between wind power is conducted on very large scale,
where it is shown that the correlation between aggregate
wind power of large systems is similar to that of correla-
tion between WFs.

In this paper, we look at the smoothing of wind power
on different spatial and temporal scales by incorporating
more and less detailed data on wind speeds from CReSS
(Cloud-Resolving Storm Simulator) [4]. The detailed 0.5
Hz sampled data with a spatial resolution of 200 m are ob-
tained in an area outside the coast of Aomori Prefecture in
northern Honshu, Japan, while the more coarse 1 h-1 sam-
pled data with 2 km resolution in Japan. To analyze the
smoothing effects of wind power, we apply the so-called
Koopman Mode Decomposition (KMD) (from its connec-
tion to the Koopman operator in dynamical systems the-
ory) [5] to output powers of Wind Turbines (WT) or WFs,
which transforms the time-series data into a finite number
of modes evolving with single frequencies.

The contributions of this paper are mainly two-fold.
First, a new and easily applicable index for the smooth-
ing effects of wind power is proposed and compared with a
conventional one, e.g. [2]. Second, it newly looks at the ap-
plication of large-scale weather simulation data to analyze
smoothing effects of wind power in Japan, which could be
a viable method of analyzing potential sites for large-scale
wind power development in the future.

2. Conventional Index of Wind Power Smoothing

This section revisits a conventional index of wind power
smoothing [6]. We let S′(f) represent the PSD of wind
speed at one WT in a WF, assuming that all WTs expe-
rience the same mean wind, and γ2ij(f) = exp(−adij

U f)
a function describing the coherency of wind speeds at the
two measurement locations labeled by integers i and j that
are separated by the distance dij , where a is a decay con-
stant, U mean wind speed, and f frequency. Note that the
exponential function is an approximation of coherence for
turbulence used in micrometeorology [6]. Thus, when con-
sidering a collective effect of winds over the WF with N
turbines, the PSD of time-varying component of collective
wind speed is described in [6] as follows:

SWF(f) = S′(f)
1

N2

N∑
i=1

N∑
j=1

γij(f), (1)
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where 1
N2

∑N
i=1

∑N
j=1 γij(f) is called the WF filter, which

depends on the coherence functions and quantifies the de-
gree of smoothing achieved at the WF.

Now considering wind power instead, the PSD of output
power PWF at a WF can be approximated in [2] as follows:

SPWF(f) = S′P (f)

N∑
i=1

N∑
j=1

Γij(f) cos(φij(f)), (2)

similar to (1), where S′P (f) represents the PSD of out-
put power at a typical WT, φij(f) a function determin-
ing the phases of power outputs, and Γij the coher-
ence function. The WF filter here becomes GWF(f) :=

SPWF(f)/S′P (f) = 1
N2

∑N
i=1

∑N
j=1 Γij(f) cos(φij(f)).

The coherence function Γij(f) is in [2] as follows:

Γij(f) =
|SPij

(f)|√
SPii

(f)SPjj
(f)

, (3)

which quantifies the magnitude of overlapping frequency
content of two signals, where SPii

is the PSD of electric
power at WT i, and SPij the cross spectral density be-
tween i and j. It is shown in [2] that the exponential ap-
proximation of (3) like above offers a good agreement with
experimentally-obtained data in Japan.

Suppose that output powers Pi are measured at ev-
ery WT i, and the total power corresponds to Ptot =
1
m

∑m
i=1 Pi in per unit (p.u.). The following smoothing

index with respect to a “typical” WT i is then derived:

si(f) :=
√
SPtot(f)/(SPi

(f)), (4)

which is the gain of GWF(f) in accordance with [2], as a
comparison to (9) proposed later for KMD. The functions
SPtot and SPi

are the PSDs of Ptot and Pi. Since a “typical
WT” could be a difficult task to determine, in particular
when outputs and locations vary significantly, we consider
calculating the mean smoothing according to

s(f) := tmean(si(f)), (5)

where tmean represents the 25 % truncated mean over all
WTs i = 1, . . . ,m, to remove outliers.

3. New Smoothing Index via Koopman Modes

In this section, we introduce a new index to characterize
the smoothing effects of wind power based on the so-called
Koopman Mode Decomposition (KMD). We refer to [5,7–
9] for detailed theoretical background of KMD.

Now, we consider N + 1 vector-valued snapshots
of wind power measurements collected at m locations:
{P 0, . . . ,PN}, P k ∈ Rm. The sampled time-series are
then decomposed into a finite sum via KMD:

P k =

N∑
i=1

λ̃ki ṽi, k = 0, . . . , N − 1,

PN =

N∑
i=1

λ̃Ni ṽi + r,


(6)

Figure 1: Placement of wind turbines (red dots) in a hypo-
thetical wind farm with 600 m distance between turbines.
The colored background and arrows indicate the speed and
direction of wind. The black curve depicts the coastline of
Aomori Prefecture.

computed via an Arnoldi-type algorithm [5], giving N
pairs of so-called Ritz-values λ̃i ∈ C and vectors ṽi ∈ Cm.
The vector r is the residual component in KMD; if assumed
to be zero, (6) becomes

P k =

N∑
i=1

λ̃ki ṽi, k = 0, . . . , N. (7)

Frequencies are calculated as fi = Im(ln(λ̃i))/(2πTs),
where Ts is the sampling period of data. The vector ṽi

is here called the Koopman Mode (KM) and contains the
magnitudes and phases of power fluctuations at the mea-
surement locations for the frequency fi. To identify lightly
damped or undamped oscillations with large magnitude, all
N KMs are sorted by (λ̃i)

N‖ṽi‖, and higher ranked ones
are called dominant KMs. Here, KMD will be applied
to wind powers at m locations, representing hypothetical
WTs or WFs. The total power Ptot,k can be expressed us-
ing (7) as

Ptot,k =

N∑
i=1

λ̃ki

m∑
j=1

[ṽi]j =

N∑
i=1

λ̃ki vi, (8)

where vi ∈ C is the scalar KM of the total output. That
is, a spectral decomposition of the total output power is
achieved through the decomposition of individual outputs.
Now let Ai = |vi| be the amplitude factor the i-th KM
oscillation for the total output, and analogouslyAij = |vij |
the factor for the same oscillation for a WT or WF j, and
Ai = [Ai1, . . . , Aim]> (> denotes vector transpose.) Then
we define

si := Ai/(m · tmean(Ai)), (9)

as a index of smoothing with respect to frequency fi, where
tmean is same as in (5), taken over all m turbines, and m
is included in (9) to scale down the total output to p.u. If
the amplitude of an oscillation is smaller in the sum than
for individual WTs or WFs, then (9) becomes smaller than
one for that particular fi.
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Figure 2: (a) Turbine outputs for 600 m (distance between
consecutive turbines) case; (b) wind farm outputs and ap-
proximations by dominant KMs; smoothing results via (c)
KMD and (d) PSDs.

4. Demonstration
Now, two examples are used to evaluate the index pro-

posed in this paper. The first one incorporates 0.5 Hz sam-
pled wind prediction data from the CReSS weather model
[4], averaged over a grid with 200 m spatial resolution. The
data are used as input to WTs in a hypothetical WF outside
the coast of Aomori Prefecture in Japan [10]. A single ar-
ray of 15 turbines is considered, and three cases are con-
sidered where the distances between consecutive turbines
are chosen as 400, 600, and 800 m; see red dots in Fig.
1 which depicts the 600 m case. The “lowest” WT posi-
tion in the figure is common for all cases. Wind speeds are
converted into power outputs with a standard power curve.
The KMD and proposed index are applied to sampled pow-
ers for 16 minutes, where wind speeds are dramatically in-
creasing due to an incoming winter storm, and turbine out-
puts are shown in Fig. 2 (a) for the 600 m case.
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Figure 3: Measurement points outlining the coasts of
Japan’s main islands. The red crosses indicate a case of
concentrated wind power production (Case 1) and black
crosses the case of most sparsely distributed (Case 5).
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Figure 4: (a) Aggregated wind farm outputs depicted by
solid curves and comparison with the reconstructed out-
puts by dominant KMs with the dashed lines; smoothing
of wind power by (b) KMD and (c) PSDs.

Fig. 2 (b) shows how well the subsets of dominant KMs
approximate the wind farm outputs using (8). Smoothing
results for all cases calculated with (9) are presented in Fig.
2 (c). The results indicate considerable smoothing that in-
creases with higher frequency. In particular, for frequen-
cies higher than about 4 · 10−3 Hz, i.e. periods less than 4
min, si becomes small, indicating the wind farm smooth-
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ing. As a comparison, the smoothing index s(f) calcu-
lated via PSDs is given in Fig. 2 (d). The results on PSD-
based smoothing initially looks similar and then increases
towards and above unity for all cases. This would imply
that a certain fluctuation in the output of a WT is magnified
by the wind farm, which is not realistic. If all WTs e.g. os-
cillate 1 p.u. in unison for a particular frequency, the wind
farm output would also oscillate with 1 p.u. (with respect
to its maximum capacity.) The issue here may be that the
different WTs have significantly different spectrum, thus
it becomes difficult to average the results or estimate the
smoothing based on a single turbine output.

On the other hand, the KMD-based smoothing result in-
dicates that the smoothing significantly improves for the
800 or the 600 m distance case between WTs compared
with the 400 m case, in difference to the PSD-based index
which is inconclusive on this point. We see that this seems
to agree with the observed WF outputs in Fig. 2 (b) since
e.g. the WF output in the 800 m case fluctuates less than
for the 400 m case.

Now we look at more coarse CReSS data of whole Japan
(2 km spatial resolution and Ts = 1 h). We consider 41
hypothetical wind farms (or locations) whose outputs are
calculated with the same power curve used previously. The
locations vary from a WF distribution concentrated to the
northern part of Honshu (Case 1) to sparsely distributed
WFs all along Japan’s coastline (Case 5). The two most ex-
treme cases (1 and 5) are shown in Fig. 3 and highlighted
by red and black crosses. The total outputs of all wind
farms for the all cases are given in Fig. 4 (a), together with
the reconstructed outputs by dominant KMs, and smooth-
ing results are given in Figs. 4 (b) and (c).

In this case, the KMD-based smoothing index shows
more resemblance to the results achieved via PSD-based
smoothing, although indicating slightly more smoothing.
The cause of more resemblance here might be that the spec-
trum at different locations are more homogeneous, thus
the smoothing based on the mean or individual PSDs be-
come similar. According to the KMD-based smoothing,
the improved smoothing on this large scale resembles the
improvement achieved in the previous example for a WF
(compare Fig. 2 (c) and Fig. 4 (c)), by distributing WTs
over a larger area, however more data should be considered
in the future to validate this. This scale invariability is also
supported by the results of e.g. [3, 11]. In particular [11]
shows that the reduced variability of summed power out-
puts of WFs is comparable to that of individual WFs.

5. Conclusions

A new smoothing index of aggregated wind power was
proposed based on measurements of power at each wind
farm or turbine, via the so-called Koopman Mode Decom-
position. The index was applied to wind turbine outputs
in a hypothetical wind farm in an area attractive for wind
power in Japan, as well as to coarse data of whole Japan.
According to the proposed index, the improved smooth-

ing on hour-scale for distributed wind farms in Japan be-
comes similar to the improved smoothing by distributing
turbines over a larger area in a wind farm. However, an
investigation including more data should be conducted to
validate the correctness of this, which is one of the fu-
ture works. The KMD-based index and conventional power
spectral density-based one become similar for one of two
cases here. We speculate that the agreement is dependent
on the degree of homogeneity of the spectrum of turbines
and farms, which could make it difficult to average the
smoothing result or select an appropriate comparison to the
aggregated wind power output.
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