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Abstract – Neurons play a major role in memory, 

cognition, sensory processing, body regulation, and a host 
of other functions vital to organisms. Analog silicon 
neurons are biologically inspired VLSI (very-large-scale 
integrated) circuits that mimic the electrophysiological 
behavior of neurons. This research looks at circuit 
parameter tuning for an ultra-low power analog silicon 
neuron designed with qualitative neuronal modeling. A key 
challenge to operating this circuit is adjustment of the 
circuit parameters to allow for similar behavior across a 
range of temperatures and eventually amongst many silicon 
neuron circuits in a silicon neuronal network. Two heuristic 
approaches were applied to the silicon neuron to supplement 
trial-and-error-based tuning of the circuit’s parameter 
voltages. In the future, these two approaches will be 
combined to create a fully automated tuning algorithm. 
 
1. Introduction 
 

Analog silicon neurons are electronic circuits that adopt 
the electrophysiological characteristics of neurons, the 
principle cells of the nervous system. These circuits operate 
in continuous time, require minimal power, and can be 
integrated into massively parallel networks [1]. These 
silicon neuronal networks may form the basis of future 
computers with neuromimetic architecture that may 
supplement digital transistor logic with novel computing 
techniques. Future uses of silicon neuronal networks may 
include autonomous machines, bio-silico hybrid devices, 
and ultra-low-power computing platforms. 
 Qualitative neuronal modeling refers to the use of 
approximation to reduce the complexity of biophysically 
accurate ionic-conductance models to create simpler 
mathematical models which maintain similar neuronal 
dynamics with fewer variables and simpler formulae. The 
silicon neuron used in this research was designed with a 
qualitative modeling approach in order to implement 
simpler circuitry. The silicon neuron can replicate Class I 
and Class II spiking as defined by Hodgkin [2] with only 
two variables [3]. 
 While simpler than conductance-based silicon neuron 
circuits, our silicon neuron still requires many parameter 
voltages—bias voltages applied to the components 
comprising the circuit. A challenge to proper operation of 
the circuit is finding parameter voltages that can satisfy 
narrowly defined criteria to yield neuron-like operation. 

The circuit is equipped with feedback amplifiers that guide 
finding appropriate parameter voltages with a procedure 
similar to voltage clamp experiments. Since the circuit uses 
subthreshold-operated MOSFETs, operation suffers from 
pronounced temperature sensitivity and requires the 
parameter voltages to be varied with temperature. 
 In our previous work [4], we showed that trial and error 
can be used to find parameter voltage sets for different 
temperatures. We identified pillar sets of parameter 
voltages at 17, 22, 27, 32, and 37°C and then interpolated 
parameters for intermediary temperatures and reported how 
successfully these sets replicated benchmark circuit 
behavior. 
 In this work, we discuss an algorithm that can more 
effectively generate parameter voltages for pillar 
temperatures and also be used to tune silicon neuron 
circuits in a future silicon neuronal network. We show the 
merits and drawbacks of two algorithms, one based on 
brute force and the other on Differential Evolution, and 
then propose a future tuning algorithm that combines the 
strongpoints of these two approaches. The Spectre circuit 
simulation platform was used for circuit simulations. The 
model and circuit of our silicon neuron is explained in the 
next section. The trial and error approach is reviewed in Sec. 
3. The two new approaches are reported in Sec. 4, which is 
followed by a conclusion. 
 
2. Silicon Neuron Model and Circuit 
 
 The silicon neuron circuit [3] is divided into two blocks, 
a v-block and n-block, each with a capacitor that is charged 
and discharged by transconductance circuit components 
(Fig. 1). Variable v represents the membrane potential and 
variable n represents an abstracted ionic activity. Each 
variable is coded by subtracting the voltage over its 
capacitor from Vdd. 
 The system equations of the silicon neuron are: 
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where fx(v), gx(v), and r(n) are the equations governing the 
transconductance circuit components, Iax is a constant 
current (x=v,n), and Istim is an externally applied stimulus  
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Figure 1: Silicon neuron circuit diagram. Adapted from [4]. 

 

 
Figure 2: Diagram of fx(v), gx(v), and r(n) circuits. 
Reprinted from [4]. 
 
current. The fx(v) circuit is a differential pair tied to a 
cascoded current mirror, and gx(v) and r(n) are modified 
cascode circuits with source degeneration (Fig. 2). The 
current-voltage equations for these components are: 
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where constants Mx, δx, θx (x=v,n), and θr correspond to 
externally applied bias voltages (here referred to as 
parameter voltages), κ is the PMOS capacitive coupling 
ratio, I0 is the PMOS off-current, and UT is the thermal 
voltage. Eqs. (3)–(5) express sigmoidal relationships [3][5]. 
 All transistors in the silicon neuron circuit are operated 
in the subthreshold regime, allowing for desirable 

 
Figure 3: Benchmark transient behavior. Frequency 
response to a 5 pA and 10 pA sustained stimulus, 15.1 and 
36.2 Hz respectively. 
 

 
Figure 4: Benchmark nullclines with three intersections 
highlighted 
 
exponential current-voltage characteristics and total power 
consumption as low as 3 nW. 

The nullclines, curves on which Eqs. (1) and (2) equal 
zero, can be used to describe the neuron-like dynamics of 
the circuit [6]. TAV and TAN are the transconductance 
amplifiers that measure the nullclines with a voltage clamp 
technique similar to a DC steady state analysis. 
 
3. Parameter Tuning with Trial and Error 
 

Pronounced temperature sensitivity is a major drawback 
to operating transistors in the subthreshold regime. 
Temperature changes of a few degrees can completely 
disrupt normal operation of the circuit. Furthermore, due to 
transistor mismatch, individual silicon neurons in a future 
neuronal network will require a unique set of parameter 
voltages. These factors illustrate the importance of 
developing a parameter voltage tuning strategy for proper 
operation of the silicon neuron. 
 In [4], we performed Spectre simulations in which we 
adjusted the parameter voltages of the silicon neuron to 
yield similar dynamics at different temperatures. We 
established a benchmark at 27°C in which we recorded the 
circuit’s response to 5 pA and 10 pA sustained stimuli (Fig. 
3), and the threshold current necessary to generate an action 
potential for a 500 µs pulse stimulus (Ith). We also plotted 
the nullclines (Fig. 4). All successive attempts to tune the 
circuit were judged by these benchmarks. Class I spiking 
was used because of its readily discernable phase plane 
with three nullcline intersections (Fig. 4) and simple firing 
mechanism governed by a saddle-node on invariant circle 
bifurcation [6]. 
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 We then simulated the circuit at 17, 22, 32, and 37°C and 
adjusted the parameter voltages with trial and error. Five 
influential parameter voltages were selected with all others 
held constant. The gn(v) circuit was turned off. The 
nullclines were used to find approximate parameter 
voltages, which were then tuned until circuit operation 
matched the benchmark transient behavior as closely as 
possible. 

Table 1 shows the parameter voltages found by trial and 
error for each temperature. Parameter voltages gv_Vm, 
fn_Vb, Iav_Vin, Ian_Vin, and rn_Vm in the table 
correspond to constants θv, Mn, Iav, Ian, and θn in the circuit 
equations. The bottom three rows of the table note the 
transient behavior of each parameter set at its temperature. 

 
4. Heuristic Algorithms 
 
 Trial and error allowed us to find adequate parameter 
voltages for a variety of temperatures, but the method was 
cumbersome and time consuming. To bring a degree of 
automation to parameter tuning, we wrote a script which 
calls Spectre, runs transient or nullcline-drawing 
simulations, and analyzes results. This script can then be 
integrated with search algorithms to identify parameter 
voltages that recreate the benchmark circuit behavior. 
 
4.1. Brute Force 
  
 The first search algorithm used was a brute force method. 
Our aim was to fine-tune the results of the trial and error 
approach by searching for better parameter voltages in the 
nearby vicinity of parameter space. For each of the 5 
parameter voltages, the brute force algorithm tested 5 
possibilities: the original value, ±0.5 mV, and ±1 mV. The 
circuit was then simulated with all possible parameter 
combinations. The threshold current (Ith) and responses to 
5 pA and 10 pA sustained stimuli were recorded. 55=3125 
simulations required about 3.5 hours of calculation time. 
 The algorithm searches for the minimum of a cost 
function, in this case the magnitude of the difference 
between vectors of the observed circuit behavior and 
benchmark behavior (Eqs. (6) and (7)). Vector x represents 
the input circuit parameters, function j(x) is the vector of 
behaviors as recorded by the circuit simulator, and vector a 
is the benchmark behavior. The threshold index is related 
to the threshold current. 
 

 𝐣 𝐱 =
threshold	index

5	pA	stimulus	response
10	pA	stimulus	response

, 𝐚 =
1.21
15.87
37.18

 (6) 

 
 𝑓 𝐱 ≜ 𝐣 𝐱 − 𝐚  (7) 
 
 The brute force algorithm includes a polishing step 
which uses the simulation results to predict the location of 
the global minimum between parameter combinations. 

 

Table 1: Results of Trial and Error. Reprinted from [4]. 
Temperature (°C) 17 22 27 32 37 
gv_Vm (mV) 388 417 432 443 449.5 
fn_Vb (mV) 257 248 237 231 219 
Iav_Vin (mV) 434 450 461 468.5 473.5 
Ian_Vin (mV) 420 449.5 464.5 475 481.5 
rn_Vm (mV) 480.5 462.5 445 430 415 
Ith (pA) 201 185 178.5 164 147 
5 pA response (Hz) 16.3 15.8 15.1 15.7 18.5 
10 pA response (Hz) 39 38.8 36.2 38.7 39.4 

 
 Table 2: Results of Brute Force 

Temperature (°C) 17 22 27 32 37 
gv_Vm (mV) 387 416.1 432 442.2 448.6 
fn_Vb (mV) 257 247.4 237 230.1 218.7 
Iav_Vin (mV) 434.4 451.4 461 469.2 474.2 
Ian_Vin (mV) 420.4 451.2 464.5 475.7 482.3 
rn_Vm (mV) 478.2 460.3 445 428.6 413.9 
Ith (pA) 202.5 184.5 178.5 167.5 150.5 
5 pA response (Hz) 15.8 16.1 15.1 14.4 17.2 
10 pA response (Hz) 37.2 37.1 36.2 37.1 37.4 

 
Table 3: Results of Differential Evolution 

Temperature (°C) 17 22 27 32 37 
gv_Vm (mV) 394.3 415.7 432 445.3 456.7 
fn_Vb (mV) 253.4 245.2 237 228.7 220.3 
Iav_Vin (mV) 433.5 450.4 461 468.3 473.6 
Ian_Vin (mV) 418.9 449.4 464.5 474.3 481.2 
rn_Vm (mV) 478.2 460.3 445 428.6  407.2 
Ith (pA) 201  181 178.5  179  189 
5 pA response (Hz)  17.3  16.9 15.1  9.2  0 
10 pA response (Hz)  38.5  34.5 36.2  38.1  35.1 

 
For example, for fn_Vb at 22°C, the algorithm tested 247, 
247.5, 248, 248.5, and 249 mV and by interpolation 
returned 247.4 mV as the global minimum. 
 Table 2 shows the results of the brute force algorithm. 
Three circuit behaviors were measured for the four 
temperature steps. The categories which showed 
improvement from the original trial and error results are 
highlighted in gray. 
 
4.2. Differential Evolution 
 
 The second search algorithm used was Differential 
Evolution, an evolutionary algorithm that evolves a 
population of random solution vectors over many 
generations to find the global minimum of a cost function 
[7]. Our algorithm was inspired by a similar algorithm in 
[8]. 
 Instead of running transient simulations, the algorithm 
employs the silicon neuron’s nullcline drawing feature. The 
cost function used was the vector magnitude of the mean 
absolute error of the v- and n-nullclines from the 
benchmark nullclines (Eq. 8). x again is a vector of the 
input parameter voltages, vi(x) and ni(x) represent points on 
the v- and n-nullclines, and bi and ci are the corresponding 
points on the benchmark nullclines. The summation is 
carried out over each step of a DC steady state analysis. 
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c
𝑛d(𝐱) − 𝑐dc
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  (8) 
 
 The algorithm starts with an initial set of random 
nullclines and gradually fits them to the benchmark curves 
by rejecting parameter sets which perform poorly while 
maintaining and evolving sets which perform well. Figure 
5 shows the nullclines returned by the algorithm for 32°C 
overlaid on the benchmark nullclines. One run of the 
algorithm required about 3 hours of computing time. 
 The nullclines are independent of the r(n) circuit, so the 
parameter voltage for rn_Vm—the only parameter voltage 
that controls the r(n) circuit—was taken from the brute 
force approach and further tuned by trial and error for 37°C. 
Table 3 shows these parameter sets along with the results 
of the transient simulations, which were comparable to the 
original trial and error approach for 17, 22, and 32°C. The 
5 pA stimulus failed to induce firing for 37°C. The 
measured behaviors that were closer to the benchmark than 
the trial and error results are highlighted in gray. Fewer 
categories were closer to the benchmark than for brute 
force, but the Differential Evolution algorithm was 
significantly more automated. 
 
5.  Conclusion 
 
5.1. Discussion 
 
 The brute force algorithm worked well by evaluating the 
circuit’s transient behavior, but suffered from a limited 
search range, the expansion of which exponentially 
increases calculation cost. Effective use of this algorithm 
necessitates a first step which identifies approximate 
parameter voltages. 
 The Differential Evolution algorithm on the other hand 
starts from a random solution and automatically finds 
parameter voltages that yield accurate nullclines relatively 
quickly. However, the results of the transient simulations 
were poor. While the nullclines give good clues about the 
dynamics of the circuit, they only partially describe the 
system. Additionally, the algorithm in its current form does 
not tune r(n) because of circuit constraints. A more 
effective algorithm must tune r(n) and take transient 
simulations into account. 
 
5.2. Future Algorithm 
 
 We propose a 2-stage heuristic algorithm which 
combines the merits of Differential Evolution and brute 
force. The first stage will use Differential Evolution to tune 
the nullclines of the circuit to best match the benchmark 
nullclines. The second stage will use brute force to search 
all nearby parameter combinations for the parameter set 
which most closely replicates the benchmark transient 
behavior. The brute force stage may also search a wider 
range for rn_Vm of r(n) since this parameter is not 
incorporated in the first stage. 

 
Figure 5: Nullclines from Differential Evolution for 32°C 
 
 Such an algorithm may improve the above results. The 
same approach may also be used to tune different silicon 
neurons of the same design which vary due to transistor 
mismatch. 
 We plan to first simulate this algorithm with Spectre and 
eventually implement it with our actual VLSI circuit using 
lab equipment and software such as LabVIEW. 
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