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Abstract – We consider interval estimation of a time 

delay in coupling between oscillatory systems from 

observed time series. It is shown that asymptotic estimates, 

based on an empiric model in the form of first-order phase 

oscillators and maximum likelihood formalism, can lead to 

false conclusions about the value of the delay in two cases: 

(i) for nonlinear low-dimensional systems whose phases 

are well-defined but considerable amplitude fluctuations 

make phase description of the dynamics insufficient, (ii) 

for systems whose phases are not well-defined due to large 

amplitude fluctuations. We suggest an empirical  criterion 

for diagnosis of such problematic situations and develop a 

modified estimator assuring low probability of false 

conclusions in those situations. Efficiency of the suggested 

estimator is demonstrated for benchmark systems with 

different dynamical properties, including stochastic and 

deterministically chaotic oscillators. An application of the 

approach to an analysis of large-scale climate processes is 

presented. 

 

1. Introduction 

 

Phase approximation is widely used to describe 

dynamics of oscillatory systems in nonlinear dynamics 

and oscillation theory [1,2]. Due to reduction of model 

dimensionality and retaining essential dynamical 

properties, phase description appears an efficient approach 

to a series of problems including the study of 

synchronization conditions [2,3]. Due to high sensitivity 

of the phase variable to external influences, phase 

dynamics analysis is used to detect couplings between 

oscillators from time series [4-6] which appears useful in 

different fields including neurophysiology and 

climatology (e.g. [7] and references therein). Within such 

an analysis, it is important to have tools for coupling delay 

estimation [8], e.g. to estimate signal propagation time in 

a complex medium. When dealing with short time series 

(several dozens of basic periods) typical in practice, it is 

important to get not only the value of the delay (a point 

estimate), but also a justified estimate of its uncertainty 

(an interval estimate). Several recent studies is devoted to 

the development of such tools [9,10]: the estimation 

methods are based on fitting empirical models in the form 

of coupled first-order phase oscillators where future 

phases are determined by the current phase values and 

external noises generated independently of the current 

phase values. Such a model is strictly justified for self-

sustained oscillators which individually exhibit limit 

cycles, while couplings and noises slightly perturb these 

cycles [1]. Under violation of those conditions, including 

intensive noises leading to strong amplitude fluctuations 

or chaotic regimes of low-dimensional nonlinear systems, 

the phase description is insufficient and the first-order 

phase oscillators appear quite a rough approximation. Still, 

one may expect that the phase model-based coupling 

delay estimators are sometimes applicable even in such 

complicated cases, but it is to be checked. Further, for 

practical applications one needs a criterion to recognize 

situations where the existing delay estimators are 

erroneous. Then, one also needs modified estimators 

applicable to such problematic situations. The questions of 

revealing problematic situations, finding a criterion for 

their recognition, and developing a modified estimator are 

studied in this work. Section 2 describes an existing 

interval estimator of coupling delay. Section 3 presents a 

typical situation, where that interval estimator can be 

erroneous, and introduces a modified estimator assuring 

low pre-defined error probability. Section 4 gives an 

application of the approach to real-world data about large-

scale climate processes El-Nino/Southern Oscillation and 

North Atlantic Oscillation. Conclusions are given in 

Section 5. 

 

2. Asymptotic Interval Estimator 
 

According to the technique developed in Refs. [8-10], 

one computes phases of the observed signals )(1 tx  and 

)(2 tx  (e.g. using the analytic signal construction [2] as in 

the examples below) and gets the time series 

 )(),...,( 111 Ntt   and  )(),...,( 212 Ntt   from observed 

signals  )(),...,( 111 Ntxtx  and  )(),...,( 212 Ntxtx , where 

titi  , t  is sampling interval, N is time series length. 

Then, one fits the phase dynamics model whose form 

comes from the fact that the phase dynamics of weakly 

perturbed periodic self-sustained oscillators yields to the 

differential equations of the first-order stochastic phase 

oscillators  
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where independent white noises possess covariance 

functions )()()( ttDtt
kkk    , functions kG  

determine both individual phase nonlinearity of the 

oscillators and their couplings, and 
*

kj  are coupling 

delay times. In time series analysis, on fits stochastic 

difference equations which correspond to the equations 

(1) integrated over an interval of the finite length   (a 

parameter of the method): 

 
kjjk

tttFtt kkjjkkkk



 

,2,1,

),())(),(()()( 
  (2) 

where kj  is a trial time delay, kF  is a low-order 

trigonometric polynomial, whose coefficients are 

determined via minimization of the mean squared model 

error  

 
i
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An achieved minimal value )(2
kjks   is then minimized 

over kj : its minimum point is 

)(minargˆ 2
kjkkj s

kj



 



. An unbiased coupling delay 

estimate for the system (1) then reads 2ˆˆ   kj
corr

kj . 

An asymptotic maximum likelihood estimator of its 

variance is given by 
1
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where N   is the number of statistically independent 

values of model residual errors over the time series. It is 

estimated as LtNN  , where ],max[ TL   and T is 

the decay time of the autocorrelation function of the 

model residual errors for the kth oscillator. The 95% 

confidence interval for the time delay is then given by 

]ˆ2ˆ;ˆ2ˆ[ ˆˆ
kjkj

corr
kj

corr
kj

     and its width is 

kj
M


 ˆ

ˆ4 . Efficiency of this interval estimator is 

shown in Refs. [9,10] for coupled phase oscillators 

perturbed by white or colored noise and for van der Pol 

generators. Erroneous estimation results are observed if 

the dependency )(2
kjks   does not exhibit a single clear 

minimum which occurs in case of too small noise level in 

the driving oscillator or too large noise level in the driven 

oscillator. 

 

3. Problematic Situations and Modified Estimator 

 

Let us consider low-dimensional nonlinear systems 

with well-defined phases and possibility of chaotic 

dynamics where problems with the above estimation 

technique can be expected due to violation of the 

assumption about one-dimensional phase dynamics 

perturbed by external noises (1). Such an example is given 

by Roessler systems:   
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(3) 

where 985.0,015.1 21   , 1.0a , 1.0b , and 

parameter r has been varied in a wide range allowing 

transition from periodic to chaotic regimes via a period-

doubling cascade, 2,1  are white noises of intensities 

2,1
D , coupling delay time is 120  , K is coupling 

coefficient. If one defines phases via the relationships 

2,12,12,1 cosAx   and 2,12,12,1 sinAy  , then the phase 

dynamics of the driven system yields to the equation 
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Even at zero 
2,1

D  in the system (3), the reduced phase 

model (1) must include “noise” terms approximating the 

influence of the amplitude A and the third coordinate z. 

Properties of such “efficient phase noises” may be rather 

non-trivial, especially in chaotic regimes, leading to 

larger-than-expected errors in the above asymptotic 

estimates. 

In numerical simulations we generated ensembles of 

100 time series of the variables 2,1x  at each set of 

parameter values: the integration step in the Euler 

integration scheme was 0.001, the sampling interval t = 

0.3 (20 data point per a basic period), the length of each 

time series N = 2000 (about 100 basic periods) or N = 

20000 (i.e. 1000 periods), the parameter 5.1  (it gives 

an optimal sensitivity of the method, though the results are 

weakly sensitive to its values in the range from a quarter 

to several basic periods). From each pair of time series we 

computed their phases via Hilbert transform and obtained 

the above interval estimates of the delay. Then, the 

number of erroneous estimates (i.e. such that   does not 

belong to the interval  ]ˆ2ˆ;ˆ2ˆ[ ˆˆ
kjkj

corr
kj

corr
kj

    ) 

was counted and the frequency of the errors errf  was 

calculated. We say that the estimator works properly if 

1.0errf , because error probability of 0.05 corresponds 

to the claimed 0.95 confidence band and finite-ensemble 

fluctuations of the error frequency distributed according to 

Bernoulli’s law make an allowable error frequency level 

somewhat larger. The results of the analysis for the 
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individually chaotic oscillators with r = 10 and coupling 

coefficient 05.0K are shown in Fig.1. Autocorrelation 

function of the phase model residual errors (Fig.1,a) 

decays down to a small value (about 0.2) after several 

oscillations with doubled basic oscillation period due to 

peculiarities of the Roesller attractor structure. At time 

series length of 100 basic periods, situations “good” for 

the asymptotic interval estimator correspond to noise-

perturbed regimes with 6.0
1
D   (Fig.1,b, circles). At 

weaker noises, errf  exceeds the threshold level of 0.1, i.e. 

the asymptotic estimator becomes unreliable. The 

difficulty can be diagnosed in practice [9,10] from the 

absence of a clear minimum on the plot )( 21
2
2 s  (left 

inset in Fig.1,b).  

 
FIGURE 1.  Coupling analysis for the system (3): 

Autocorrelation function of the phase model residual errors (a); 

error frequency for the asymptotic (circles) and modified 

(triangles) interval estimators at N = 2000 (b) and N = 20000 (c); 

the width M in units of t for the asymptotic (circles) and 

modified (triangles) interval estimators at N = 2000 (d) and N = 

20000 (e). 

 

The situation becomes even more difficult if longer 

time series are considered (1000 basic periods, probably 

less important in practical applications): large error 

frequency is observed at high noise levels as well (Fig.1,c, 

circles). It occurs because the point estimator 
corr

kĵ
 

appears somewhat biased, while the variance estimator 
2
ˆˆ

kj
  remains correct and becomes small (of the order 

of nonzero estimator bias) for long time series leading to 

frequent erroneous estimates. The results are analogous 

for other forms of couplings (e.g. couplings introduced 

into the equation for the y-variable) and for strongly 

perturbed individually-periodic systems. The cause of the 

nonzero bias seems to be in the peculiarities of the 

interaction between the phases and amplitudes and z-

coordinates ignored in the phase model (2). The bias can 

be different for different nonlinear systems, so that one 

needs a special criterion for the practical recognition of 

possible difficulties and a modified estimator to get 

reliable estimates in such problematic situations. 

We suggest to regard an essentially non-quadratic 

form of the minimum of )(2
kjks   as a sign of “danger”. 

Namely, one should be careful in using the asymptotic 

interval estimator if the minimum is skewed (asymmetric, 

as in the right inset in Fig.1,b and inset in Fig.1,c), 

sufficiently deep local minima exist in the vicinity of the 

global minimum, etc. In such cases, we suggest to go 

beyond the asymptotic estimators based on approximation 

of local properties of the 2
ks  minimum and focus on its 

global properties which may be expected to be a more 

robust feature. Namely, we draw a straight line parallel to 

the abscissa axis at the mean level between maximal and 

minimal values of 2
ks   within the range of trial delays 

considered (e.g. a range from zero to five basic periods 

used above) and take its leftmost and rightmost cross-

section points with the plot )(2
kjks   as the boundaries 

of the interval estimator. Such a modified (rough) 

estimator eliminates high error frequencies in all the 

above problematic situations (Fig.1,b,c, triangles) at the 

expense of typically somewhat wider confidence band M 

(Fig.1,d,e, triangles). However, it still allows an 

informative estimation, distinguishing an existing 

coupling delay from zero in the above examples. The 

modified estimator may also appear unreliable only if any 

clearly pronounced minimum on the plots  )(2
kjks   

(even a skewed one) is absent (left inset in Fig.1,b) which 

is easily diagnosed in practice. 

The asymptotic estimator encounters the same large-

error problems also in cases when the oscillators’ phases 

are not well-defined due to strong amplitude fluctuations 

induced either by external random perturbations or 

internal chaotic dynamics. We showed that in numerical 

simulations with chaotic Lorenz systems and stochastic 

linear oscillators. The modified estimator allowed us to 

avoid frequent erroneous conclusions in all these cases as 

well. 

 

4. Application to climate processes 

 

Both estimators are applied to an analysis of couplings 

between El-Nino/Southern Oscillation (ENSO) and North 

Atlantic Oscillation (NAO) from observational data. 

These climate processes represent leading modes of 

interannual climate variability [11]. Influence of ENSO on 
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NAO was detected in Ref. [12] where a point estimate of 

the delay time in this influence was obtained. The latter 

appeared equal to about 20-24 months.  The above 

interval estimators may give additional information about 

probable range of values of that delay. We have used the 

following indices reflecting those processes: the leading  

mode of 500 hPa geopotential height surface for NAO 

[13] and sea surface temperature in equatorial Pacific 

(region Nino-3.4: 5
o
N-5

o
S, 170

o
W-120

o
W) for ENSO 

[11]. The data under analysis cover the interval since 1950 

till now and are available at http://www.ncep.noaa.gov.  

As shown in Ref. [12], the phases defined via complex 

Morlet wavelet transform [14-16] in the frequency band 

corresponding to the periods from 24 to 40 months allow 

us to detect the influence of ENSO to NAO. Here, we 

applied the above interval estimators to the same phase 

time series. The results are following: The corrected point 

estimate of the delay time is 36 months. The asymptotic 

interval estimate cover the range 29-43 months. However, 

the plot for the model prediction errors reveals sings that 

the modified estimator may be more appropriate. The 

latter gives a wider confidence interval from 8 to 47 

months.  Still, not approaches detect nonzero coupling 

delay. However, the modified estimators evidences that it 

is not necessary to seek for the causes of the large 2-year 

delay.  Quite probably, the delay is smaller and consists 

slightly more than half a year. Such information is of 

interest for climate science as discussed in Ref. [12]. 

 

5. Conclusions 

 

We have studied applicability of the asymptotic interval 

estimator of the coupling delay time based on phase 

dynamics modeling, to oscillators with different 

dynamical properties. We have shown that low-

dimensional nonlinear dynamics along with strong 

amplitude fluctuations can strongly increase probability of 

erroneous conclusions about the value of the delay. An 

empirical criterion for diagnosis of such problematic 

situations is suggested, along with a modified interval 

estimator based on the rough (global or larger-scale) 

properties of the phase model residual errors’ minimum. 

The latter estimator is shown to provide the error 

probability less than a pre-defined small value for 

characteristic oscillatory systems with rather different 

properties of phase dynamics. Hence, it extends 

possibilities of reliable coupling delay time estimation for 

a wide range of oscillatory systems in practice. In 

particular, we have applied the suggested approach to 

analyze large-scale climate processes from observational 

data where it confirms a non-zero delay in the influence of 

El-Nino/Southerm Oscillation on the North Atlantic 

Oscillations. 
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