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Abstract—This paper studies dynamics of a simple
switched dynamical system. Repeating integrate-and-fire
behavior between a constant threshold and piecewise lin-
ear periodic base signal, the system can exhibit a variety
of chaotic and super-stable periodic orbits. The dynamics
is simplified into a piecewise linear return map. Using the
return map, parameter conditions of various super-stable
periodic orbits are analyzed precisely.

1. Introduction

This paper studies a variety of super-stable periodic or-
bits in a simple switched dynamical system (SDS [1]-[3]).
The dynamics of SDS is based on integrate-and-fire behav-
ior between a constant threshold signal and periodic base
signal. Especially, we consider the case where the base
signal given by addition of the first triangular signal with
period T and the second triangular signal with period T/M.
If the base signal is given by either the first of second sig-
nal only, the SDS exhibits chaotic orbit characterized by
positive Lyapunov exponent. However, if the base signal
is given by both the first and second signal, the SDS ex-
hibits a variety of super-stable periodic orbit (SSPO) such
that almost all initial state fall rapidly into the SSPO.

The dynamics of SDS is integrated into a piecewise lin-
ear return map. Based on the map, we present simple and
systematic calculation methods of parameter regions of the
SSPOs. We then clarify that, a variety of SSPOs exists or
co-exist in the parameter space. Although discussion of
this paper is based on theory-based numerical experiments,
we have prepared laboratory measurements of typical phe-
nomena for the final version.

The SDS is inspired by a simple integrate-and-fire type
spiking neuron model [1]-[6]. Analysis results of simple
neuron models have contributed to consideration of neural
information processing function [7] [8]. Engineering appli-
cations of such systems are many, including signal/image
processing and ultra wide band communication [9] [10].
Analysis of such systems is important not only as a nonlin-
ear dynamical system but also for engineering applications.

It should be noted that our previous paper [3] has dis-
cussed SSPOs, however has not discussed parameter re-
gions of various SSPOs and their calculation method.

2. Circuit Model

Figures 1 and 2 show a circuit model and dynamics of
the SDS, respectively. The capacitor voltage v rises to the
threshold VT with slope s. As v reaches the threshold then
the SDS outputs a spike Y(t) = E and v reset to the periodic
base signal(B(t)) with period T . Repeating this integrate-
and fire behavior, the SDS outputs spike-train Y(t). For
simplicity, the inner resistors are ignored (r1 → ∞, r2 → 0)
and the switching is assumed to be ideal: v1 is reset instan-
taneously without delay. The dynamics is described by⎧⎪⎪⎪⎨⎪⎪⎪⎩

C
dv
dt
= I, Y(t) = −E for v(t) < VT

v(t+) = B(t+), Y(t+) = E if v(t) = VT

(1)

B(t) = K1B1(t) + K3B1(3t) + E0 , B1(t + T ) = B1(t) (2)

B1(t) =
{ −(A − 2)t/T for − d < t/T < d

A(t/T − 2d) + 2d for d < t/T < 1 − d (3)

where B(t) < VT . Using dimensionless variables and pa-
rameters:

τ =
t
T
, x =

v
VT
, ẋ =

dx
dτ
, y =

Y + E
2

k1 =
K1

VT
, k3 =

K3

VT
, a0 =

E0

VT
, s =

IT
CVT

(4)

Eqs. (1)-(4) are transformed into{
ẋ = s for x < 1
x(τ+) = b(τ+) if x(τ) = 1 (5)

b(τ) = k1b1(τ) + k3b1(3τ) + a0, b1(τ + 1) = b1(τ) (6)

b1(τ) =
{ −(A − 2)τ for − d < τ < d

A(τ − 2d) + 2d for d < τ < 1 − d
(7)

where ẋ ≡ dx/dτ. The base signal is characterized by pa-
rameters A and d. For simplicity, we assume

2 < A < 4, 0 < d < 0.5

In this paper, we consider three cases of the b(τ).

Case 1: The first component only (k1 � 0, k3 = 0)

Case 2: The second component only (k1 = 0, k3 � 0)

Case 3: Two inputs (k1 � 0, k3 � 0)

It goes without saying that the theorem of superposition is
not valid in this nonlinear system.
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Figure 1: A circuit model

Figure 2: Example waveforms

3. Experiments

In order to confirm typical phenomena, we have fabri-
cated a breadboard prototype of the BN. Figure 3 shows
typical phenomena. The BN exhibits chaos for B(t) = B1(t)
(first component only) or B(t) = B3(t) (second component
only). However, if B(t) = B1(t)+B3(t) then the BN exhibits
periodic waveform as shown in Fig. 3(c). That is, chaotic
behavior of each BN can be changed into periodic behavior
by the two inputs.

4. Spike-phase Map

In order to analyze the dynamics, we derive a SPmap of
the SDS. Let τn denote the n-th spike position. Since τn+1

is determined by τn, we can define the Smap.

τn+1 = τn + (1 − b(τn))/s ≡ F(τn) (8)

Since F1(τ+ 1) = F1(τ)+ 1 is satisfied, we introduce the
phase variable θ1(n) = τ1 mod 1. Using this, we can define
the Pmap as shown in Fig. 4:

θn+1 = f (θn) ≡ F(θn ) mod 1 (9)

Substituting k3 = 0 and a0 = 0 into Eq. (6), we obtain
the Pmap for the first component. Substituting k1 = 0 into
Eq. (6), we obtain the Pmap for the second component.

f (θn) =
{

aθ for − d < θ < d
−aθ + (1 + a)/2 for d < θ < 1 − d (10)

Figure 3: Typical waveforms of BN. (T = 1.0[ms], C =
0.022[μF], r1 = 120.2[kΩ], r2 = 1.1[kΩ], VT = 1[V], A =
4.0, d = 0.33, E0 = 0) (a)first component only (k1 = 1,
k3 = 0), (b)second component only (k1 = 0, k3 =

1
3 ), (c)two

inputs (k1 = 1, k3 =
1
3 ).

The shape of the Pmap depends on the shape of b(τ). As
the parameter varies, the shape of Pmap varies and SDS can
exhibit various spike-trains. Since the base signal is piece-
wise linear, the maps are also piecewise linear and precise
numerical analysis is possible.

In Case 1 and 2, the Pmap exhibits chaos as shown in
Fig. 5(a) and (b). In Case 3, the Pmap exhibits super-stable
periodic orbit(SSPO) as shown in Fig. 6. That is, chaotic
behavior of each SDS whose base signal is given by single
component can be changed into periodic behavior by the
two inputs.

Figure 4: (a) Spike-position map(Smap), (b) Spike-phase
map(Pmap).
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Figure 5: Pmap for a0 = 0.34, a = 2.77. (a) The first com-
ponent only (k1 = 1, k3 = 0), (b) The second component
only (k1 = 0, k3 = 1/3).

Figure 6: Pmap for k1 = 1, k3 = 1/3, a0 = 0.34, a = 2.77.

5. Analysis

First, we give several basic definitions. A point θ f ∈ I is
said to be a 1-periodic point or fixed point if F(θ f ) = τ f .
A point θp ∈ I is said to be a k-periodic point if Fk (θp) =
θp and Fl(θp) � θp for 1 ≤ l ≤ k where Fk is the k-fold
composition of F and k ≥ 2.

Now we consider the periodic behavior in Case 3. Fig.
7 shows several Pmaps. Corresponding SDS exhibits peri-
odic waveform with period 2. Note that the Pmap has four
segments with zero-slope(s1 to s4) and exhibit super-stable
periodic orbits (SSPO). Let points p1 to p4 denote images
of s1 to s4 as shown in Fig. 6.

We explain an outline of the analysis. First, since the
Pmap includes four segments with slope-zero and other
segments are expanding, a trajectory started from one of
the four points p1 to p4 must return to either of the four
points. That is, it is sufficient to use one of the four point as
an initial values. If a trajectory started from pi (i = 1 ∼ 4)

Figure 7: Pmap for two inputs(k1 = 1, k3 = 1/3). (a) a0 =

0.14, a = 2.3, (b) a0 = 0.50, a = 2.4, (c) a0 = 0.37, a = 3.0,
(d) a0 = 0.83, a = 2.3.

Figure 8: Parameter regions for super-stable periodic spike-
train with period 2. (k1, k3) = (1, 1/3) and d = 1+a

4a . Red
region: SSPO started from s1. Blue region: SSPO started
from s2. Pink region: SSPO started from s3. Orange re-
gion: SSPO started from s4.

returns to pi then the orbit is SSPO. If a trajectory started
from pi falls into pj( j � i) then orbit is transient to some
SSPO.

Fig. 7 shows typical Pmaps of SSPOs with period 2. Fig.
8 shows parameter regions for SSPO with period 2: a basic
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results of the bifurcation analysis in the a0 − a plane. It is
derived by the following 3 steps.

Step 1: Select the dc component a0 and the slope a as
control parameters.

Step 2: Use pi (i = 1 ∼ 4) as an initial values.

Step 3: If a trajectory return to pi by twice then plot to the
a0 − a plane.

After the step is terminated, we obtain parameter regions
for SSPO with period 2.

6. Conclusions

We have studied a variety of super-stable periodic or-
bits in a simple dynamical system with integrate-and fire
switching. Using Pmaps, we have calculated parameter re-
gions of various SSPOs. The future problem includes de-
tailed analysis of typical bifurcation phenomena and appli-
cation to spike-based engineering systems.
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