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Abstract—In this paper, a new local search method us-
ing search history in evolutionary multi-criterion optimiza-
tion (EMO) is proposed. This approach was designed by
two opposite mechanisms (escaping from local optima and
convergence search) and assume to incorporate these into
an usual EMO algorithm for strengthening its search abil-
ity. The main feature of this approach is to perform a high
efficient search by changing these mechanisms according
to the search condition. If the search situation seems to be
stagnated, escape mechanism would be applied for shifting
search point from this stagnated condition point to another
points and breaking this stagnation. On the other hand, if
it observes no sign of the improvement of solutions after
repeating escape mechanism in a certain number of times,
this approach judges that the solutions are near global op-
tima and convergence mechanism is applied to improve
their qualities by intensive local search. In this paper, this
approach is called “a escaping from local optima and con-
vergence mechanisms based on search history - SPLASH

i

Experimental results show that the effectiveness of the
proposed mechanisms was verified through investigating
the influence by the presence or absence of the proposed
each mechanism.

1. Introduction

In recent years, evolutionary multi-criterion optimiza-
tion (EMO) is one of the most active research areas and
various kinds of multi-objective evolutionary algorithm
(MOEA) was proposed. Additionally, the combination
MOEA and local search (LS) approach has been stud-
ied and presented its high search performance. These
approaches are called multi-objective memetic algorithm
(MOMA) and were widely proposed as typified by multi-
objective genetic local search (MOGLS)[1].

In general, these approaches use a neighborhood search
or a kind of gradient search and usually need high
comptational costs.  Also, there has been some ap-
proaches for escaping from local optima in single-objective
optimization[2, 3], but very few studies in multi-objective
optimization.

Therefore, we proposed a new local search method using
a search history in EMO, named SPLASH!.

ISPLASH is abbreviated name of “a escaping from local optima and

SPLASH is consists of escaping from local optima
machanism and convergence search mechanism. Es-
cape mechanism estimates unexplored regions using whole
search history information and tries to escape from local
optima. On the other hand, convergence mechanism es-
timates prospective regions using a part of search history
information and tries to improve a quality of solution.

The computational cost of each mechanism are same as
that of genetic operation. thus, if we apply SPLASH in-
stead of genetic operation, the computational cost in each
generation is no difference to that of normal case (not using
our mechanisms).

2. SPLASH

Our approach, named SPLASH, is consists of two mech-
anisms: escape machanism and convergence mechanism.
These mechanisms using search history information would
be expected to strengthen the search ability of MOEA. In
this section, we explain how to store the search infromation
into a search history, then details of these mechansisms of
SPLASH.

2.1. How to Store Search History

Since the amount of memory in a computer simulation
must be limited, every search history information cannot be
stored directly. Therefore, our approach uses the discretiza-
tion of the search history information when to store these
information into memory. This discretization is designed
by reference to the concept of long term memory[4].

The concept of this storing approach is described in Fig-
ure 1. In Figure 1, feasible region in each variables is [0,1]
and the memory of search history is discretized into three
parts; [0,0.33), [0.33,0.67) and [0.67,1.0].

In Figure 1, the memory of search history is reprenseted
by a matrix and row of this matrix means the variable value
and column presents the discriteized range of each variable
value.

2.2. Escape Mechanism

This mechanism tries to break through a search stagnat-
ing condition in design space using search history informa-
tion. In order to detect a stagnating condition, this mech-
anism uses a stagnation parameter k; (i = 1,...,N). Each

convergence mechanisms based on search history”.
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Figure 1: Concept of storing an individual to memory

individual (each sub-problem in MOEA/D) has own this
parameter and increments this parameter by one (k;=k;+1)
if the individual x' is not update after a selection operator.
On the other hand, when the individual x is updated, the
parameter k; is assigned to zero (k;=0). And then, if k; is
over the pre-defined threshhold K (k; > K) at the beginning
of next generation, escape mechanism would be performed
instead of normal genetic operators for creating new solu-
tions (such as crossover and mutation).

The flow of this mechanism is as follows. In here, M
represents the memory matrix presented in 1. This matrix

M is used in escape mechanism and m;;(i = 1,...,D and
j=1,...,n)is a element of M. Also, D is the number of
rOws.

We defined memory M each sub problems and count
neighborhood solutions.

Stepl. Selecting update range
Select candidate solutions for the seeds of new so-
lution using rand, where rand is uniformly random
number from [0, 1]. In here, we used two different
ways of choosing candidate depending the value of
rand like below equation.

_ | B®
P‘{ {L,....N}

if rand < 6
otherwise

The above function returns the suffix numbers of can-
didate solutions and vector P stores the suffix informa-
tion of candidate solutions. B(i) is the function that re-
turns around the value of input “i”. On the other hand,
{1,..., N} return a random integer number from 1 to
N. This selection of vector P has a role of defining the
range of updating for sub-problem in MOEA/D.

Step2. Selecting variables for changing
Randomly select some variables values in x.

Step3. Inverting the value of memory M
In order to invert the value of memory M, each el-

ement of M is replaced by M = m;"”“" - m(i =
I,...,Dand j = 1,...,n). In here, m}”’”t means the

biggest value in j rows in M.

Step4. Deciding the value of variant

Changing the value of the selected variables in Step2.
In order to decide the changing velue, it needs to de-
cide the discretized range of the selected variables.
Here a roulette selection approach for each rows in M
is applied to select the discretized range. Through this
roulette selection, the changing velue y is randomly
generated within this discretized range.

StepS. Generate new solution
A new solution x’ is generated by replacing the val-
ues of the selecting variables of x with y generated by
Step4.

step6. Update
Our updating follows the solution updating mecha-
nism of MOEA/D-DE[5]. The steps of updating so-
lutions in MOEA/D-DE are follows. In the following
step, counter parameter ¢ is used for calculating the
number of updating.

1) If ¢ = n, or P is empty, finish. Otherwise, ram-
domly pick an index p from P.

2) If g(x’|A7,z) < g(xP|A?,z), then x = x’ and ¢ =
c+1.

3) Delete p from P and go to 1).

2.3. Convergence Mechanism

This mechanism performs intensive local search around
prospective areas in design space using search history in-
formation. Basic concept of this mechanism is the same as
that of escape mechanism, but the role of these mechanisms
are opposite. And there are two different points in terms of
memory index. One point is that memory index consists
of the information of near the current solution. That is, the
memory used in this mechanism is same as that of escape
mechanism, but focus on a part of this memory. And the
second one is that the element value of memory matrix is
not inverted like Step3 of escape mechanism.

The procedure of this mechanism is almost same as
that of escape mechanism, but the above-mentioned search
memory is quite different.

3. Experimental Results

In these experiments, firstly we conpared two algo-
rithms (original MOEA/D-DE[5] and MOEA/D-DE with
SPLASH) to investigate the influence of SPLASH using
WEG test suites. Secondly, we investigated the influence
of each mechanisms in SPLASH through analyzing a tran-
sition of the execution ratio between two mechanisms of
SPLASH and genetic operation.
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3.1. Benchmark Problems

As benchmark problems, we used WFG test suites[6].
WEFG consists of nine benchmark instances, WFGI-
WFG9. The details of WFEG are shown in [6]. In these
experiments, we set the number of variables n = 20, the
number of position parameters k = 2(M — 1) and the num-
ber of distance parameters [ = n — k, where M is number of
objectives. However, only WFG3 has a degenerate Pareto
flont in the case of over 3 objectives. Since there is a part
of non-degenerate Pareto flont in WFG3, we used modified
WFG3 proposed in [7].

3.2. Parameters

In these experiments, stopping criterion was 100000
function evaluations and average hypervolume value of 50
runs is used as a measure of obtained solutions. The setting
of other parameter were as follows.

MOEA/D-DE
decomposition parameter H = 199,6,4(m = 2,5, 8)
population size N = 200,210, 330(m = 2,5, 8)
neighborhood size T = N/10
probability of mating/update in neighborhood 6 = 0.9
the maximum of individuals to update n, = 2
scalarizing function Tchbycheff
genetic operators
crossover rate CR = 1.0
scaling parameter in DE operator F' = 0.5
mutation rate MR = 1/n
distribution index in polynomial mutation = 20
SPLASH
the number of discretization of memory D = 25
the number of rows in convergence mechanism D" = 5
stagnation count to apply escape mechanism K = 5

3.3. Metrics

The search performance of algorithms was evaluated by
Hypervolume(HV)[8]. HV calculates the m-dimensional
volume that obtained solutions dominate in objective space.
High HV value shows good solutions in convergence, di-
versity and uniformity. In these experiments, we set refer-
ence point r = {3,5,7,11,13,15,17,19}.

3.4. Search Perfomance in WFG

The results are shown in Table 1 to 3. Our approach
performed higher HV values than those of MOEA/D-DE
in WFG4 and WFG9, but HV of WFG4 was more higher
than that of WFGY9. The main reasons could be thought
that WFG4 and WFG9 have multi-modality and WFG9 has
a parameter dependence. WFG7 and WFGS also have pa-
rameter dependence. Therefore, our approach was not so
good in the case of 2 objectives. WFG2 and WFG6 are uni-
modal problem and the results of these problems showed
similar to those of WFG7 and WFGS8. Additionally, our
approach was good results in the case of many-objective
problem.

As a consequence, our approach was efficient for mul-
timodal problems and many-objective problems. On the
other hand, our approach was not good for unimodal prob-
lems and parameter depending problems.
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Figure 2: A transition of the execution ratio in 500 genera-
tions (MOEA/D-DE with only escape mechanism)

3.5. Process of Search

Table 4 shows HV and stagnation count in WFG4. In this
table, SPLASH indicates MOEA/D-DE with SPLASH, es-
cape means MOEA/D-DE with only escape mecanism and
convergence means MOEA/D-DE with only convergence
mecanism.

Stagnation count is the number of individuals that are
not updated in each generations and the maximum value is
100000. The highest HV value is performed by proposed
and lowest is performed by original MOEA/D-DE and the
highest value of stagnation count is also performed by orig-
inal MOEA/D-DE.

A transition of the execution ratio are shown in Figure
2 to 4. In these figures, vertical axis represents each indi-
vidual and horizontal axis is generations. Figure 2 shows
escape mechanism is effective in middle part of the search
and Figure 3 shows convergence mechanism is conducted
in last part of the search.

4. Conclusions

In this paper, a new local search method using search
history in EMO, SPLASH was proposed. Experimental re-
sults showed that the effectiveness of the proposed mecha-
nisms was verified through investigating the influence with
or without the proposed mechanisms. Escape mechanism
is effective in middle part of the search and convergence
mechanism is in last part of the search. In future work, we
will research about dynamic parameter settings and how to
store search history can be effective in problem having pa-
rameter dependence.
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