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Abstract—This paper studies a paralleled system of
boost converters with WTA-based switching rule. The sys-
tem exhibits multi-phase synchronization phenomena and
chaotic phenomena. The multi-phase synchronization is
suitable for ripple reduction, current sharing, and efficient
power supply. The WTA-based switching rule is effective
to reinforce the fault tolerance. Simplifying the system
into a piecewise linear model, stability of the synchroniza-
tion phenomena and ripple waveforms can be analyzed pre-
cisely.

1. Introduction

The paralleled systems of switching power converters
have been studied from fundamental and application view-
points. In the fundamental study, the paralleled systems are
interesting examples of switched dynamical systems that
can exhibit a variety of nonlinear phenomena such as multi-
phase synchronization and chaos [1]-[4]. In the applica-
tions, the paralleled systems can realize current sharing and
ripple reduction which are effective in robust and reliable
power management [5]-[9]. In these studies, analysis of
nonlinear phenomena is important and single power con-
verters have been studied sufficiently. However, the anal-
ysis of the paralleled systems is not easy because they are
higher dimensional nonlinear systems with various com-
plex behavior.

This paper studies stability of a paralleled system of N
boost converters through which N pieces of input voltage
sources are applied to a load. The N boost converters are
coupled by the winner-take-all (WTA) switching rule that
can realize N-phase synchronization (N-SYN) automati-
cally. The N-SYN is suitable for ripple reduction of input
current that is effective to realize higher efficiency opera-
tion. Especially, if the input voltage is given by solar cells,
the rippled reduction is well suited for maximum power
point tracking [10] [11]. The parallel operation is also suit-
able in viewpoint of fault-tolerance: if some converter is
broken, the other converters can preserve the operation. In
order to analyze the system, we introduce a simple piece-
wise linear model and provide a sufficient condition of pa-
rameters for stability of N-SYN and precise calculation for-
mula of the input ripple. These results can clarify stable
operation, power efficiency and fault tolerance. Perform-
ing basic numerical experiments, the stability of N-SYN
and robust operation of the circuit are confirmed. We have

prepared laboratory measurements of typical phenomena
for the final version.

2. 3-Paralleled Boost Converter

Fig. 1 shows the simplified circuit model of the paral-
leled boost converters where rL is an inner resistance of in-
ductor. The j-th converter includes the switch S j and diode
Dj which can be either of the State A or State B: where
j = 1 ∼ N.

State A: S conducting, D blocking, and i j > 0.
State B: S blocking, D conducting, and i j > 0. (1)

For simplicity, let N = 3 hereafter. Let iin = i1+ i2+ i3 be
an input current. In order to simplify the analysis, RC load
is replaced with constant voltage sources Vo j shown in Fig.
3 where RC � T is assumed. T is a clock period.

Figure 1: A circuit model of 3-paralleled boost converters.

This circuit dynamics is described by

Ldi j

dt
=

{ −rLi j + Vin for State A
−rLi j + Vin − Vo j for State B (2)

Eq. (6) is changed into the following dimensionless
equation because the analysis is simplified.

dxj

dτ
=

{ −γxj + a for State A
−γxj − bj for State B (3)
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Figure 2: simplified model of RC load.

Where the following dimensionless variables and param-
eters are used:

a =
TVin

LJ
, bj =

T (Vo j − Vin)
LJ

γ j =
TrL

L
τ =

t
T
, xj =

i j

J
, X− =

J−
J

(4)

Let xin = iin/J = x1 + x2 + x3 be a dimensionless input
current. In the circuit, J− > 0 is the lower current threshold
and J > 0 is a current criterion for a desired operation. The
state transition is defined by following switching rule. In
the State A, the inductor current i j rises as shown in Fig.
3. If the xj is the maximum among x1 to xN at some clock
signal arriving time τ = n then State A is changed into State
B. Let the j-th system be State B where j-th dimensionless
current xj decays. If the xj reaches the lower threshold
X− then the State B changed into State A. Note that the
three converters are connected by the comparison of x1 ∼
x3 (i1 ∼ i3) in the SW rule.

SW rule
{

State A→ State B if i j=Max (t = nT )
State B→ State A if i j = J−

(5)

Figure 3: WTA switching rule

The piecewise exact solution is given by

xj(τ) =
{

(x(0) − a/γ)e−γτ + a/γ for State A
(x(0) + bj/γ)e−γτ − bj/γ for State B (6)

If D fN(a, b) is larger than 1, the N-SYN is unstable where
x(0) indicates an initial value. Using these equations, we
can calculate waveforms precisely. In this paper, the pa-
rameters condition is following.

a = 0.3, γ = 0.3, X− = 0.05, bj : varies

Fig. 4 shows typical waveforms of 3-phase synchroniza-
tion phenomenon.

Figure 4: Typical waveforms. (a) Waveform of x1 (b1 =

0.5). (b) Waveform of x2 (b2 = 0.5). (c) Waveform of x3

(b3 = 0.5). (d) Waveform of 3-SYN (b1 = b2 = b3 = 0.5)

3. Stability of N-phase synchronization

Here we define the N-phase synchronization (N-SYN)
for N = 3. Let x = (x1, . . . , xN ). x is said to be N-SYN if

x(τ + 3) = x(τ)
x2(τ) = x1(τ + 1), x3(τ) = x2(τ + 1) or
x3(τ) = x1(τ + 1), x2(τ) = x3(τ + 1)

(7)

Conditions to be N-SYN is b1 = b2 = b3 = b. The N-SYN
is stable if

D fN(a, b) ≡
∣∣∣∣∣ X − P1

X + P2
e−αN

∣∣∣∣∣ < 1 (8)

where P1 = a/γ > 0, P2 = b/γ > 0, 0 < X− < P1.
Fig. 5 and 6 show the stable factor D f for N = 3 and

N = 2, respectively. Fig. 7 (a) shows a waveform of 3-SYN
with input current. In Figs. 5 and 6, the bifurcation diagram
is given by peak of x1, indicated by xp in Fig. 7 (a). In Fig.
5, 3-SYN is stable (unstable) for b > bp (b < bp) where
D f3(0.3, bp) = 1 . In Fig. 6, 2-SYN is stable (unstable) for
b > bq (b < bq) where D f2(0.3, bq) = 1. Note that bp < bq.
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That is, both 3-SYN and 2-SYN are stable for b > bq. 3-
SYN is stable and 2-SYN is unstable for bq > b > bp. Both
3-SYN and 2-SYN are unstable for bp > b.

Here we assume that an accident occurs and the third
converter is broken in the case of where 3-SYN is stable.
The system of 3 converters is changed into that of 2 con-
verters. If b > bq then 2-SYN is stable after the accident
as shown in Fig. 7 (a’) where ripple is reduced after the
accident. If bq > b > bp then 2-SYN is unstable after the
accident as shown in Fig. 7 (b’). If bp > b then unstable
3-SYN is changed into hyperchaos as shown in Fig. 7 (c’).
In order to consider the dynamics, we introduce the Lis-
sajous figure as shown in Fig. 8. The Lorenz plot suggests
complicated dynamics. The failed converter can exhibit in-
teresting chaotic phenomena as shown in Fig. 7 (c’) and
Fig. 8 (c).

Figure 5: Bifurcation diagram from/to 3-SYN. (a = 0.3,
γ = 0.3)

Figure 6: Bifurcation diagram from/to 2-SYN. (a = 0.3,
γ = 0.3)

Figure 7: Typical waveforms (a = 0.3, γ = 0.3) (a) Stable
3-SYN and input current b = 0.20 before the accident (a’)
Stable 2-SYN b = 0.20 after the accident. (b) Stable 3-
SYN b = 0.12 (b’) Unstable 2-SYN b = 0.12. (c) Unstable
3-SYN b = 0.045 (c’) Hyperchaos b = 0.045.
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Figure 8: Lissajous figure of current waveform. (a) to (c)
corresponds to the Fig. 7 (a’) to (c’), respectively. Black
dots denote the Lorenz plot at which x1 is the local maxi-
mum.

4. Conclusion

Introducing a simple PWL model of paralleled boost
converters. Stability of N-SYN and fault-tolerance have
been considered in this paper. It is confirmed that the
WTA-switching rule can preserve N-SYN after the acci-
dent in some parameter a range. Future problems includes
more detailed analysis of stability, ripple characteristic, and
power efficiency. Now we are preparing laboratory experi-
ments for confirmation of typical phenomena.
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