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Abstract—A silicon neuronal network is a most fine
granular approach to the neuromorphic systems whose sig-
nificance is growing as a candidate for the core technology
of the next generation low-power, autonomous, and intel-
ligent computing systems. In silicon neuron circuits, there
has been a trade-off between the power consumption and
the capability of reproducing complex neuronal activities.
We developed an ultralow-power silicon neuron circuit that
can realize multiple classes of neuronal activities including
square-wave bursting. Simulation results of our circuit in a
square-wave bursting setting are reported.

1. Introduction

The growing social demand for huge-scale information
networks and the environmental demand for reducing the
power consumption of computing systems are enhancing
the significance of neuromorphic systems which realize a
low-power, autonomous, and robust computing by mim-
icking the information processing of the brain. A silicon
neuronal network is a most fine granular approach to the
neuromorphic systems, which aims to realize an electronic-
circuit version of the nervous system by connecting silicon
neuron circuits via silicon synapse circuits.

The electrophysiological activity of the neuronal cells is
one of the crucial factors in the information processing of
the nervous system. Therefore, various models with differ-
ent levels of details have been developed. The ionic con-
ductance models which describe the mechanisms for the
dynamical change of the membrane potential can precisely
reproduce complex neuronal activities. Silicon neuron cir-
cuits for bio-silico hybrid systems implement them[1, 2]
and inherit this advantage. But the complexity in their
equations rises their power consumption beyond 100 µW.
For low-power consuming systems, simpler models have
to be adopted. Many low-power silicon neuron circuits im-
plement the integrate-and-fire(I&F)-based models and con-
sume just several nanowatts[3, 4, 5, 6, 7]. The equations
of these models are generally simple because they treat the
neuronal spike as an event and describe only its timing. It is
shown that networks of the I&F-based silicon neurons can
execute various processing similar to those by the artificial
neural networks[3, 4, 6].

In the brain, however, the neuronal spikes are not
uniform[8, 9] (graded response) and chemical synapses
can transmit their variation to their postsynaptic cells[10].

Thus, there is a possibility that the analog information of
neuronal spikes is playing some roles in the information
processing of the brain. Another class of simple neuronal
models that do not ignore the spike generation mechanisms
is the qualitative models. They describe the dynamical
structures in the neuronal activities by relatively simple
polynomial-based equations. In our previous works[11,
12, 13, 14, 15], we proposed to design an implementation-
oriented qualitative neuronal model that is described by
formulae of the input-output characteristics of low-power
circuits. On the basis of this approach, we developed
a three-variable qualitative silicon neuron model for im-
plementation by subthreshold metal-oxide-semiconductor
field-effect transistor (MOSFET) analog circuits. It sup-
ports multiple classes of neuronal activities including the
Class I and II in Hodgkin’s classification, the regular spik-
ing, the square-wave bursting (SWB), and the elliptic burst-
ing by appropriate configurations of its parameters. A
fabricated circuit could realize all of these activities with
power consumption less than 72 nW[16, 12, 13, 14, 15].
This power consumption is more than one order of magni-
tude higher than that of the ultralow-power circuits in [17]
(2 nW) which was designed by a similar approach but ded-
icated only to simplest activities, either Class I or Class II.

Because a wide variety of complex neuronal activities
are observed in the brain, it is natural to suppose that the
capability of reproducing more complex activities is im-
portant for the brain-like computing. Hence, to reduce the
power consumption penalty paid for this capability, we de-
signed another three-variable model for ultralow-power cir-
cuitry by expanding the two-variable model of the silicon
neuron circuit in [11] that supports only the Class I and
II. In this article, we report simulation results of its imple-
mentation in a SWB setting. The model and circuitry of
our circuit are explained in the next section. The simula-
tion results are reported in the third section followed by
conclusion.

2. Model and Circuitry

Our silicon neuron model has three variables, v, n, and q.
The first two variables are for the spike generation dynam-
ics and the last variable provides slow feedback dynamics
that modifies the former faster dynamics. Its equations are

Cv
dv
dt
= fv(v) − gv(v) + Iav − rn(n) − rq(q) + Istim, (1)
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Figure 1: Schematics of (a) fx(v) circuit and (b) gx(v) and
ry(y) circuits, where m = 2 (1) for M3 in the gx(v) (ry(y))
circuits. The circuit in the gray box is implemented only
for the gn(v) circuit.
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Figure 2: Block diagram of our silicon nerve membrane
circuit. Each block corresponds to a term in the system
equations (1) and (2).

Cn
dn
dt
= fn(v) − gn(v) + Ian − rn(n), (2)

Cq
dq
dt
= fq(v) + Iaq − rq(q), (3)

where v, n, and q represent the membrane potential, the
fast dynamics, and the slow dynamics, respectively. Ca-

pacitances Cv, Cn, and Cq are 0.6 pF, 0.9 pF, and 24 pF, re-
spectively. Currents Iav, Ian, and Iaq are parameters and Istim
is a stimulus input. Functions fx(v), gx(v) (x = v, n), and
ry(y) (y = n, q) are the formulae of the input-output char-
acteristics of transconductance circuits whose schematic is
illustrated in Fig. 1. Their equations are

fx(v) =
Mx

1 + exp (− κUT
(v − δx))

, (4)

gx(v) = I0

√
Rx20 exp ( κUT

θgx)

1 + Rx21 exp (− κUT
(v − θgx))

, (5)

ry(y) = I0

√
exp ( κUT

θry)

1 + exp (− κUT
(y − θry))

, (6)

where κ, UT , and I0 are the capacitive-coupling ratio,
the thermal voltage, and the current scaling parameter of
PMOS transistors, respectively. Parameter θ·· depends on
voltage Vm in Fig. 1(b). Parameters Rx20 and Rx21 are con-
trolled by digital inputs bSW0 and bSW1 (see Fig. 1(b)),
respectively. When bSW0 (bSW1) is low, the gate volt-
age of M4 (M5) is shorted to VddSW which equals to or
is higher than Vdd. In this situation, M4 (M5) is disabled
and thus Rx20 (Rx21) is 2. When voltage bSW0 (bSW1) is
high, M4 (M5) is activated and thus Rx20 (Rx21) is 4 (1).
These parameters are used to change the v-offset of gx(v).
Because the circuit in the gray box is not implemented for
gv(v), Rv20 and Rv21 are fixed to 2. These functions have a
monotonic increasing sigmoidal shape and the square root
in gx(v) and ry(y) makes their gradient shallower than that
of fx(v). The reversed N-shaped v-nullcline, which is com-
mon in neuronal spike generation systems, is realized by
combination of a shallow sigmoidal curve and a steep one.

Figure 2 illustrates the block diagram of our circuit.
Each colored box represents the elemental circuit that cor-
responds to the function in its label. Constant current
sources for Iax are implemented by transconductance am-
plifiers. Each variable in the model is coded by the voltage
difference between Vdd (1.0 V) and the non-grounded ter-
minal of the corresponding capacitor. The white box at the
top of the diagram is a feedback amplifier for voltage clamp
measurement. It clamps v at a voltage similar to Vcv when
SW1 and SW2 are switched to the upper terminal and Vcq
is fixed at 1.0 V to keep the output of the upper rq(q) cir-
cuit zero (the voltage clamp mode). The nullcline of each
variable is drawn by plotting the voltage that codes the vari-
able while slowly sweeping Vcv. A bifurcation diagram of
the spike generation system can be drawn when SW1 is
switched to the lower terminal and SW2 is switched to the
upper terminal (the bifurcation diagram mode). In this set-
ting, the circuit for the v-n system operates normally while
the output of the rq(q) circuit can be controlled by Vcq. By
slowly sweeping Vcq and plotting the stable state of the v-n
system, we can draw a bifurcation diagram whose bifurca-
tion parameter is q. These two modes guide the parameter
voltage tuning process to construct the dynamical structure
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Figure 3: The v- and n-nullclines of our circuit in a square-
wave bursting setting, drawn in the voltage clamp mode.
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Figure 4: A v-q plane of our circuit. The bifurcation dia-
gram of the v-n system obtained in the bifurcation diagram
mode and the q-nullcline measured in the voltage clamp
mode are projected.

in a neuronal activity to be realized. They are particularly
effective to find appropriate parameter voltages of a fabri-
cated circuit which is affected by the device mismatch.

3. Simulation Results

We designed our silicon neuron circuit using a Taiwan
Semiconductor Manufacturing Company (TSMC) 0.25 µm
mixed-signal CMOS process development kit and found
appropriate parameter voltages for a SWB in the Spectre
simulation. Figure 3 shows the v- and n-nullclines drawn
in the voltage clamp mode. They are configured to have
one intersection when q is 0 and three intersections if the
v-nullcline is displaced downward when q is increased. To
invoke a saddle-loop bifurcation after this saddle-node bi-
furcation, the time constant of n is suppressed by keeping
Vm in the rn(n) circuit sufficiently high. The stable state
of the v-n system is projected on the v-q plane in Fig. 4,
which is obtained in the bifurcation diagram mode. The red
(blue) curve was obtained by slowly increasing (decreas-
ing) Vcq. Bistability between a limit cycle and an equi-
librium is seen at the region where q is between 50 mV
and 120 mV. The equilibrium point and the limit cycle cor-
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Figure 5: Waveform examples of v in a square-wave burst-
ing setting. (a) Regular bursting (the parameter voltages
are the same as those in Figs. 3 and 4). (b) and (c) Chaotic
bursting and tonic firing observed when a parameter volt-
age is modified.

respond to the non-spiking and repetitively spiking states,
respectively. The sweep time was 2 sec for this diagram.
In the increasing sweep, the period of the limit cycle is ex-
tended up to infinity as q is increased. Thus, the sweep
time has to be extended depending on the required preci-
sion in the diagram. The green curve is the q-nullcline ob-
tained in the voltage clamp mode, which is configured to
separate these concurrent two stable states. Note that dq

dt is
positive (negative) above (below) the q-nullcline. When the
state point is attracted by the equilibrium, it slowly moves
leftward until the equilibrium vanishes at near q = 50 mV
(the silent phase). Then, the state point is attracted by the
limit cycle (the spiking phase). It slowly moves rightward
until the limit cycle vanishes at near q = 120 mV and at-
tracted by the equilibrium again. This alternation of the
silent and spiking phases is the mechanism of the SWB.
We observed a regular bursting (Fig. 5(a)) similar to that in
the SWB cells[18, 19]. It is known that the tonic firing and
the chaotic bursting are observed in the Hindmarsh-Rose
model, a qualitative SWB model, when a parameter for the
slowest variable is modified[20]. Our circuit could produce
these activities (Figs. 5(b) and (c)) by appropriately tuning
a parameter voltage that controls Mq. In all these settings,
the average power consumption was less than 4.9 nW.

4. Conclusion

We designed a configurable ultralow-power silicon neu-
ron circuit and verified that it can realize SWB using the
Spectre simulator. It has 14 parameter voltages which have
to be configured appropriately. For the configuration pro-
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Table 1: Comparison of analog silicon neurons (∗exact
value not shown, ∗∗graded response)

this
work [17] [4] [7]

model QM QM I&F I&F
power < 5 nW 1.7 nW < 3 nW∗ < 7 nW
area
(µm2)

90000 2740 918 2980

process 0.25 µm 0.35 µm 0.18 µm 90 nm
Class I

√ √ √ √

Class II
√ √

partially
GR∗∗

√ √

SWB
√ √

cedure, the feedback amplifier and switches are integrated
in our circuit. They are used to draw the nullclines and the
bifurcation diagrams of the v-n system, which provide an
effective guide to construct proper dynamical structures. Its
power consumption was estimated to be lower than 5 nW,
which will be reduced in our future circuits by substituting
cascode circuits for the transconductance amplifiers used
to generate constant currents. The transconductance am-
plifiers for Iav, Ian, and Iaq consume 1001 pA, 929 pA, and
313 pA to generate 173 pA, 156 pA, and -32 pA, respec-
tively. The power consumption will be reduced to about 3
nW when the sum of the differences between these currents
is saved by this substitution. We are working on ultralow-
power parameter voltage generator circuits which consume
about 100 pW. If they are integrated into our silicon neu-
ron circuit, the total power consumption will be about 4.4
nW. The difference between it and 1.7 nW in [17] will be
the cost for the configurability and the capability of realiz-
ing complex neuronal activities. Our circuit occupies larger
area than recent analog silicon neurons (see Table 1). How-
ever, it may be shrinked by using a finer process because
the effects of device mismatch are compensated by our pa-
rameter tuning procedure.
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