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Abstract—In our brains, interaction between neu-
rons generates a variety of rhythms, for example, al-
pha, delta and gamma rhythms, and so on. These
rhythms are observed from mathematical neural net-
work models with spike-timing-dependent plasticity
(STDP). We have already discovered that a mathe-
matical model with the STDP can reproduce a rhythm
of very low frequency, or infra-slow oscillation. In this
paper, we analyzed the synaptic dynamics during the
infra-slow oscillation. As a result, it is indicated that
synaptic dynamics plays a key role for reproducing the
infra-slow oscillation.

1. Introduction

Billions of neurons exist in our brains and their
interaction generates a variety of rhythms. Among
them, one of the most interesting rhythms is infra-slow
oscillation (ISO). ISO was discovered by Aladjaloval[l]
with a local field potential recorded from the rab-
bit neocortex. Although ISO has been observed in
various kinds of mammalian brains[2], its generation
mechanism remains unknown. Omn the other hand,
delta rhythms (2-4[Hz]) and gamma rhythms (30—
100[Hz]) are reproduced by a mathematical neural net-
work model with axonal conduction delays and spike-
timing-dependent plasticity (STDP)[3].

In our former study, we investigated a neural mech-
anism to reproduce ISO, conducting numerical sim-
ulations with changing the curvature of the STDP
function[4]. In this study, we investigated the spike
timing difference of presynaptic and postsynaptic neu-
rons and temporal change in the synaptic weights of
all synapses.

2. STDP learning

We used the STDP rule for learning of the neural
network. In the STDP, the magnitude of change rates
in synaptic weights depends on the timing of spikes:
if a presynaptic spike arrives at the postsynaptic neu-
ron before the postsynaptic neuron fires, the synapse
is potentiated (long-term potentiation, LTP). If the
presynaptic spike arrives at the postsynaptic neuron
after the postsynaptic neuron fired, the synapse is de-
pressed (long-term depression, LTD). The magnitude

of the change in synaptic weights is decided by STDP
function which is represented as follows[5]:
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where At;; = t; —t; — d;5, t; is the firing time of post-
synaptic neuron i, t; is the firing time of presynaptic
neuron j, d;; is conduction delay from neuron j to
neuron ¢, A, is the maximum value of LTP, A_ is the
maximum value of LTD, and 7 is the time constant of
LTP and LTD.

3. Methods

The neural network we used consists of 1,000 ran-
domly connected Izhikevich neuron[3]. We prepared
800 excitatory neurons and 200 inhibitory neurons. In
this paper, we used regular spiking neurons for the ex-
citatory neurons, and fast spiking neurons for the in-
hibitory neurons. Each neuron has 100 synapses con-
nected to other neurons. Every excitatory neuron is
connected to 100 neurons that are randomly chosen
from all neurons, while every inhibitory neuron is con-
nected to 100 neurons that are randomly chosen from
excitatory neurons.

Conduction delays among all neurons are random
integers between 1 [ms] and 20 [ms]. The excitatory
connection obeys the STDP learning rule with every
1 second. The maximum value of LTP, A, is 0.1 and
the maximum value of LTD, A_, is 0.12. The initial
values of the weights are set to 6, the maximum value
is limited to 10, and the minimum value is limited
to 0. The change of the synaptic weights adopts the
nearest-neighbor spiking. The excitatory connections
are updated every second by Eq. (2):

t

w;j(t) = wi(t — 1) + Z Awi;(Atyj),

ti=t—1

(2)

where Aw;;(At;;) is defined by Eq. (1) and depends
on t; and t;. Inhibitory connection weights are fixed to
—5. A randomly chosen neuron receives a pulse of 20
[mA] every 1 [ms] as a random thalamic input. With
these experimental conditions, we changed the value
of the parameter 7 which determines the curvature of
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the STDP function in Eq. (1), and investigated the
time series of firing rates and synaptic weights.

4. Results

4.1. Temporal Change of Firing Rates and
Synaptic Weights
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Figure 1: Temporal changes of firing rates and average
synaptic weights[4]. The horizontal axis is time [s],
the left vertical axis is the synaptic weight and the
right vertical axis is the firing rate [Hz]. When 7 = 1,
the firing rate and the synaptic weight oscillate with
very slow rhythms. Both excitatory to excitatory and
excitatory to inhibitory synaptic weights take almost
the same values.

Figure 1 shows a temporal change of firing rates and
average synaptic weights when 7 = 10 and 1. We de-
fined the firing rate as the average firing frequency of
a single neuron among all neurons every one second.
Namely, we defined the firing rate by m/N [Hz], when
m firings are observed from N neurons per second.
The average synaptic weight is the average value of
synaptic weights of all connections including excita-
tory and inhibitory connections in every second.

As shown in Fig. 1(a), when 7 = 10, the firing rate
fluctuated with high frequency with almost constant
amplitude. As shown in Fig. 1(b), when 7 = 1, the
firing rate repeated sudden rise and fall with very slow
frequency. This tendency was observed when 7 ~ 1.

Focusing on synaptic weights, when 7 = 10, the
synaptic weights are constant as shown in Fig. 1(a).
The synaptic weights between excitatory and in-
hibitory neurons are stronger than that of excitatory
and excitatory neurons.

On the other hand, as shown in Fig. 1(b), the
synaptic weights oscillate with the same period as the
firing rate when 7 = 1. The synaptic weights from
excitatory to inhibitory neurons became smaller than
that from excitatory to excitatory neurons. The differ-
ence between excitatory—inhibitory synaptic weights
and excitatory—excitatory synaptic weights is smaller
when 7 = 1 than when 7 = 10.

4.2. Temporal Change of Synaptic Weights
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Figure 2: Temporal change of the synaptic weights in
all synapses of an excitatory neuron. The horizontal
axis is time[s]. The vertical axis is the synapse index.
The colors show the strength of synaptic weights. The
synaptic weights are almost constant and are sepa-
rated into maximum and minimum value when 7 = 10.
On the other hand, the synaptic weights change peri-
odically and some synapses have intermediate values
when 7 = 1.

Figure 2 shows the temporal change of all synaptic
weights selected from excitatory neuron arbitrarily. As
shown in Fig. 2, when 7 = 10, the synaptic weights are
almost constant and are separated into maximum and
minimum values. However, when 7 = 1, the synaptic
weights change with almost the same period as the
firing rate. Some synapses have intermediate values as
well as maximum and minimum values.

4.3. Histogram of Spike Timing Difference

To analyze the relation between the firing of presy-
naptic neuron and the firing of postsynaptic neuron,
we investigated the spike timing differences between
presynaptic and postsynaptic neuron. In this paper,
we defined spike timing difference as At;; in Eq. (1).
Figure 3(a) shows the frequency distribution of the
spike timing difference when 7 = 10. As shown in the
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figure, the frequency of the spike timing difference re-
peats high and low values periodically. This rhythm is
about 70[Hz](gamma rhythm). The appearance of the
gamma rhythm has already been shown in the experi-
ment by Izhikevich[3]. This tendency does not depend
on time. Therefore, result of Fig. 3(a) is consistent
with the experiment by Izhikevich[3].
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Figure 3: Frequency distributions of spike timing dif-
ferences between presynaptic and postsynaptic neu-
rons when (a)7 = 10, (b)7 = 1 during low firing rate
and (¢)7 = 1 during high firing rate. The horizontal
axis is difference of spike timing. The vertical axis is
frequency.

Figure 3(b) and 3(c) show the histograms of the
spike timing difference when 7 = 1. Figure 3(b) is
the frequency distribution when the firing rate is low,
and Fig. 3(c) is the frequency distribution when the
firing rate is high. As shown in the figures, there exist
more spike timing differences of negative values than
those of positive values. It mean that LTD occurs
more frequently than LTP. In particular, when the

high firing rates appear, the number of LTD increase
extremely(Fig. 3(c)).

4.4. Change of Synaptic Weights Which In-
duce Neuronal Firing
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Figure 4: Temporal change of synaptic weights which
induced neuronal firing. The horizontal axis is time[s].
The vertical axis is the synaptic weights. (a) shows the
change when 7 = 10 and (b) shows the change when
7 = 1. When 7 = 1, the synaptic weights become
stronger as the firing rates.

When 7 = 1, there are a large number of LTD during
high firing rate. We investigated the reason why the
firing rate becomes high despite the large number of
LTD.

Each neuron receives a number of inputs through
synapses. However such inputs do not always make
the neuron fire. We focused on the synapses which
induce firings of neurons. We plotted the time series of
the average synaptic weight in such synapses. Figure
4 shows the temporal change of the average value of
the synaptic weights in the synapses which induced
neuronal firing. As shown in the figure, when 7 =
10 the synaptic weight fluctuates almost stationarily.
When 7 = 1, the synaptic weight becomes stronger
near 10500[s], and this corresponds to sudden rise of
the firing rates as shown in Fig. 1(b). From this result,
it is revealed that firing rates can be high by inputs
from specific synapses even if there are more LTD than
LTP in average.

4.5. Histogram of Synaptic Weights

Figure 5 shows the histogram of synaptic weights.
As shown in the figure, when 7 = 10, the synaptic
weights are almost completely separated into maxi-
mum and minimum value. On the other hand, when
7 = 1, the synaptic weights are not completely divided
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into maximum and minimum value and there are more
synapses which have intermediate values.
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Figure 5: Histograms of synaptic weights. The hori-
zontal axis is synaptic weights. The vertical axis is fre-
quency. The synaptic weights are almost completely
separated into maximum and minimum values when
(a)7 = 10, while the synaptic weights are not com-
pletely separated into maximum and minimum values

when (b)T = 1.

5. Mechanism to Generate ISO

The oscillation of the firing rate shown in Fig. 1(b) is
explained by the dynamics of synaptic weights. When
the value of 7 is large, the STDP learning window has
a large width along the temporal direction. The STDP
learning with such a wide window has many chance for
learning and the synaptic weights are separated into
maximum and minimum values. Because the bimodal
distribution does not change its shape easily by LTP
and LTD, the learning converges and the firing rate
becomes stable.

On the other hand, when the value of 7 is small,
the STDP learning window has a narrow width along
the temporal direction. The STDP learning with such
a narrow window has less chance for learning and the
synaptic weights are not separated into maximum and

minimum values completely. Because the synaptic
weights of intermediate values change their values eas-
ily by LTP and LTD, the learning does not converge.
The firing rates are highly influenced by the synaptic
weights and exhibit sudden rise and fall. By the sud-
den change of the firing rates, the balance of synaptic
weights breaks down significantly. Subsequently, the
synaptic weights change with time by the STDP learn-
ing, which causes sudden change of firing rates again.
By repeating these processes, ISO is reproduced.

6. Conclusion

In this paper, we investigated the occurrence of slow
oscillation, or ISO, in a neural network with the STDP
learning. We discovered that ISO is reproduced by the
STDP learning with a narrowed window of the STDP
function. With the narrow window, the learning does
not converge and the synaptic weights become more
influenced by the change of firing rates. From these
results, it is indicated that ISO can be generated by
the synaptic weights of intermediate values.
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