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Abstract—Formation control has recently received con-

siderable attention in the field of robotics and control the-

ory. The present paper deals with two-wheeled mobile

robots which achieve circular formations based on dynam-

ics of coupled oscillators. The main advantage of this con-

trol is that circular formations can be obtained by a sim-

ple control law based on nonlinear dynamics. The purpose

of this paper is to show an another advantage, robustness

of formation: even if some robots on formations stop due

to trouble, the remaining robots make up for the troubled

robots and keep to form the circular pattern without chang-

ing control law. It is shown on numerical simulations that

the robustness of formations depends on how we choose

robots to be removed from formed robots and to be added

to them.

1. Introduction

Considerable attention has been paid to the research of

complex network science in a variety of fields. Many sub-

jects on this research are based on dynamics of coupled

oscillators [1]. In the past decades, the collective phenom-

ena in coupled oscillators have been received more and

more attention because they provide us useful information

on mechanism of various nonlinear behaviors in complex

networks [2, 3]. Nowadays, their potential applications in

engineering field have been demonstrated in many fields:

Fukunaga et al. proposed a new control system for reduc-

ing peak power in energy storages on the basis of collective

behavior in oscillators coupled by delayed power price [4];

Okuda et al. used synchronization of pulse-coupled oscil-

lators to synchronize wireless sensor networks [5]; Zhou

and Low employed collective behavior of coupled oscilla-

tors for locomotion control of an underwater vehicle [6].

In recent years, formation control, which manages be-

havior of multiple robots such that they form a specific pat-

tern, has been one of the hot topics in the field of robotics

and control theory. Hara et al. showed that a simple con-

trol law based on dynamics of coupled oscillators achieves

mobile robot circular formations [7]. Tsukiji et al. experi-

mentally demonstrated that the control law works well for

two-wheeled mobile robots [8]. Very recently, Nakamura et
al. [9] provided a simple approach for analyzing stability of

mobile robot circular formations controlled by the simple

law [7,8]. This approach gave us a simple design procedure

of control parameters stabilizing a desired formation.

Indeed, from a practical viewpoint, we should consider a

natural situation where some of robots stop due to trouble.

Even for such situation, it is expected that the remaining

robots make up for the troubled robots and keep to form

the circular pattern. Although the previous studies [7–9]

dealt with two-wheeled mobile robot circular formations

for a given number of robots, it remains an unsettled ques-

tion how robots cope with such situation. The purpose of

the present paper is to investigate behavior of two-wheeled

mobile robots in a situation where some robots are re-

moved from and added to circular formations during their

work. It is shown that the circular formations are robust

against small remove/add disturbances and large balanced
remove/add disturbances. However, we notice that large

unbalanced remove/add disturbances may destroy the cir-

cular formations, and induce other pattern formations.

2. Two-wheeled mobile robots [9]

As illustrated in Fig. 1, dynamics of two-wheeled mobile

robot i ∈ {1, . . . ,N} can be expressed as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ṙi

riκi
θ̇i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θi 0

sin θi 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

vi

ωi

]
. (1)

The robot i moves with the angular velocity of robot i
around the origin, κi ∈ R, and is located distance ri > 0

from the origin. The robot i moves with the angle θi ∈ R to

the radial direction. ψi ∈ R defines the angle between the

radial direction of robot i and that of i + 1. Here the robot i
is forced by the control signals, the heading-direction com-

ponent of velocity vi ∈ R and the angular velocity around

its center ωi ∈ R. We obtained a desired control signals by

adjusting the rotational velocity of its two wheels.

Let us move on to reference dynamics of one-way cou-

pled oscillators,

ṙi = f (ri, r̂i) := ari

⎛⎜⎜⎜⎜⎝1 − ri
2

r̂2
i

⎞⎟⎟⎟⎟⎠ , (2a)

κi = g (ψi) := Ω + ε sinψi. (2b)

Equations (2a) and (2b) describe dynamics of i-th distance

ri and dynamics of one-way coupled phase oscillators. As
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Figure 1: Sketch of two-wheeled mobile robots.

the angle between the radial directions for robots N and 1

is denoted by ψN , one-way coupled phase oscillators (2b)

has the periodic boundary. The coupled oscillators (2) have

the following parameters: r̂i > 0, a ∈ R, Ω ≥ 0, and ε ∈ R.

Our previous study [9] proposed control law for vi and

ωi, which leads the two-wheeled mobile robots (1) to be-

haver of the reference dynamics,

vi = vi := kv { f (ri, r̂i) cos θi + rig(ψi) sin θi} , (3a)

ωi = ωi := kω {rig(ψi) cos θi − f (ri, r̂i) sin θi} . (3b)

The feedback gains, kv ∈ R and kω ∈ R, can be set as one

wants.

The control law (3) suggests that the robot i always mea-

sures the three real-time data, ri, θi, and ψi. Since every

robot is supposed to be able to measure the distance to a

target and the angle between targets in real time, they can

autonomously move in accordance with control law (3).

The state space model of N robots (1) controlled by law

(3) with ψ̇i := κi+1 − κi is given by

{
ṙi = vi cos θi

θ̇i = ωi
, (i = 1, . . . ,N) (4a)

ψ̇i =
1

ri+1

vi+1 sin θi+1 − 1

ri
vi sin θi, (i = 1, . . . ,N − 1).

(4b)

This model has equilibrium points,

ri = r̂i, θi =
π

2
, ψi = 2π

l
N
, (5)

where l ∈ {0, . . . ,N} denotes a type of formations. The

equilibrium point with formation l indicates that robots

i ∈ {1, . . . ,N} move at equally spaced intervals on circles

with radius of r̂i. Our previous study provided a procedure

for design of control parameters.

Table 1: Design of control law (3).

l
N ∈
[
0, 1

4

)
l
N ∈
(

1
4
, 1

2

]
l
N ∈
[

1
2
, 3

4

)
l
N ∈
(

3
4
, 1
]

kω > 0

ε > 0 ε < 0

kv > 0 kv < 0 kv > 0 kv < 0

a > 0 a < 0 a > 0 a < 0

Fact 1 ( [9] ). Formation number (l), total number of
robots (N), and angular velocity (Ω ≥ 0), are assumed
to be given. If the parameters in control law (3) (i.e., ε,
a, kv, kω) are designed in accordance with Table 1, then
formation l (i.e., equilibrium point (5)with formation l) is
stable

It should be noted that, for the designed parameters, the

other formations might be stabilized because Table 1 is

derived on the basis of sufficient condition for equilibrium

point (5) with formation l to be stable.

3. Removing/Adding of robots

This section investigates behavior of circular formation

l = 1 when some robots are removed or added. From Fact

1, we can obtain the following result.

Corollary 1. If the parameters in control law (3) are set
to

kω > 0, ε > 0, kv > 0, a > 0, (6)

then formation l = 1 (i.e., equilibrium point (5) with for-
mation l = 1) with counterclockwise direction is stable
for any N ≥ 5.

Proof. It is clear from Table 1 that formation l = 1 on N
robots with designed parameters (6) is stable for

1

N
∈
[
0,

1

4

)
↔ 4 < N. (7)

This fact indicates that if the number of robots is equal to or

greater than five, formation l = 1 is stable independent of

the number. In addition, the angular velocity at formation

l = 1 with the designed parameters (6) is given by

κi =
v̄i

r̂i
sin
π

2
= kv

{
Ω + ε sin

(
2π

1

N

)}
> 0, (8)

for all i ∈ {1, . . . ,N}. The positive κi indicates that robot i
runs with counterclockwise direction. �

This corollary implies that formation l = 1 remains stable

even if the number of robots changes with time under con-

dition N ≥ 5. In other words, the robots can remain to

form l = 1 if some robots are removed or added under this

condition.
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Figure 2: Time series data of angles ψi (i = 1, . . . , 10) in

the case that two robots (i.e., robots 9 and 10) are removed

at t = 100 and are added at t = 200.

4. Numerical examples

This section will provide some numerical examples to

verify the analytical results. In our numerical examples,

small uniformly distributed random signals with amplitude

[−1.0 × 10−4, 1.0 × 10−4] are added to the right-hand side

of control signals (3a) (3b) in order to confirm the local

stability of formations.

We consider the following situation: N = 10 robots runs

with formation l = 1; then, two of them are removed (i.e.,

N : 10 → 8); finally, two robots are added (i.e., N : 8 →
10). Corollary 1 guarantees that formation l = 1 remains

stable for such removing/adding of robots if the parameters

in control law (3) are set in accordance with Eq. (6). Figure

2 shows time series data of angles ψi (i = 1, . . . , 10). It can

be seen that the robots 9 and 10 are removed at t = 100, and

then the eight remaining robots keep formation l = 1 with

ψi = π/4 (i = 1, . . . , 8) through transient behavior. The

two robots are added at t = 200, and then the ten robots

keep formation l = 1 with ψi = π/5 (i = 1, . . . , 10) through

transient behavior.

Corollary 1 states that, for N = 10, formation l = 1

remains stable if we remove and add up to five robots. Now

we remove and add three robots. The time series data of

angles ψi (i = 1, . . . , 10) are shown in Fig. 4. The robots

8, 9, and 10 are removed at t = 100. However, the seven

remaining robots change their formation from l : 1 → 0

through transient behavior. Remark that Fact 1 suggests

the coexistence of formations l = 0 and l = 1. Further, the

three robots are added at t = 200, but the ten robots cannot

turn back to l = 1.

In order to avoid destroying formation l = 1, we choose

the three robots (3, 6, and 9) uniformly from ten robots.

Figure 3: Time series data of angles ψi (i = 1, . . . , 10) in the

case that three robots (i.e., robots 8, 9, and 10) are removed

at t = 100 and are added at t = 200.

The chosen robots are removed at t = 100 as shown in Fig.

4. Although the removing of robots 8, 9, and 10 destroys

formation l = 1 (see Fig. 3), the uniform choice can keep

formation l = 1. The chosen robots are added at t = 200,

then the ten robots keep formation l = 1.

It should be summarized, from what have been seen

above, that stable formation l = 1 exists if the parame-

ters in control law (3) are set in accordance with Eq. (6).

In addition, this formation can remain if uniformly cho-

sen robots are removed and added, but can be destroyed by

non-uniformly chosen robots.

5. Conclusion

This paper dealt with the practical situation where some

of two-wheeled mobile robots forming a circular pattern

stop due to trouble and the remaining robots make up for

the troubled robots. The main result of this paper is that

our control law [9] based on coupled oscillators work well

even in such situation without change of the law. In addi-

tion, we have shown that the circular formations are robust

against small removing/adding and large balanced remov-

ing/adding of robots. Our robots form a circle, since they

are based on dynamics of coupled oscillators which have a

circular limit cycle. Thus, we guess that if these oscillators

are replaced by other type of oscillators, our robots might

form other shapes. We should confirm our guess for future

work.
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Figure 4: Time series data of angles ψi (i = 1, . . . , 10) in the

case that three robots (i.e., robots 3, 6, and 9) are removed

at t = 100 and are added at t = 200.
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