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Abstract—This paper considers dynamic of digital re-
turn maps, simple digital dynamical systems on a set of
points. Depending on parameters and initial states, the map
can generate various periodic orbits. In order to analyze
the steady state, we present two feature quantities: periodic
orbits occupancy rate and dispersion of periods of the or-
bit. Using the feature quantities, we construct the feature
quantities plane that is useful in visualization and classi-
fication of the dynamics. Using the feature quantities, a
simple class of cellular automata are analyzed.

1. Introduction

A digital return map (Dmap [1] [2]) is a simple digital
dynamical system on a set of points. It can be regarded
as a digital version of analog one-dimensional maps repre-
sented by the logistic map [3] [4]. Since the number of the
points is finite, the Dmap cannot generate chaos. However,
depending on parameters and initial states, the Dmap can
generate a variety of periodic orbits (PEO) in the steady
state.

The Dmap is related to various digital dynamical sys-
tems and their applications including cellular automata and
signal/image processing [5]-[8], and dynamic binary neu-
ral networks and control of switching circuits [9]. Anal-
ysis of the Dmap can contribute not only to basic study
of nonlinear dynamics but also to engineering applications.
However, the analysis is hard because the Dmap has a large
variety and the dynamics is very complicated.

In order to analyze steady states of Dmaps, this paper
presents two simple feature quantities. The first quantity is
occupancy rate of the PEOs for all the initial points. It can
characterize plentifulness of the steady states. The second
quantity is dispersion of periods of the PEOs. It can charac-
terize variety of the PEOs. Using the two feature quantities,
a feature plane is constructed. The feature plane is useful
in visualization and classification of the dynamics.

As an example of the Dmaps, we consider a Dmap de-
rived from a simple class of elementary cellular automata
(ECAs) on 8 dimensional binary spaces. The dynamics of
ECA is governed by one rule and can generate a variety of
spatiotemporal patterns, The dynamics of the ECAs is in-
tegrated into a Dmap on a set of 28 points. Calculated the
feature quantities of the ECA, we visualize/classify rich dy-
namics of the ECA. Note that this is the first publication of
the feature plane for steady state analysis and its applica-
tion to ECAs.

2. Digital return map and simple feature quantities

The Dmap is defined on a set of points to itself and its
iteration generates a digital sequence as shown in Fig. 1:

θn+1 = f (θn), θn ∈ LN

LN ≡ {l1, · · · , lN}, li ≡ i/N, i = 1 ∼ N (1)

where θn is a digital state variable on LN at discrete time n
and LN is a set of N points li. Since the points are equivalent
to binary vectors, we refer to this systems as to be digital.

Since the number of points in the domain LN is finite,
steady state must be a periodic orbit. Here we give basic
definitions.

Definition 1: A point θp ∈ LN is said to be a periodic
point with period p if f p(θp) = θp and f q(θp) � θp for 0 <
q < p where f p is the p-fold composition of f . A PEO with
period 1 is referred to as a fixed point. A sequence of the
periodic points { f (θp), · · · , f p(θp)} is said to be a periodic
orbit (PEO) with period p.

Definition 2: A point θe is said to be an eventually peri-
odic point (EPP) if θe is not a periodic point and there exists
some positive integer k such that f k(θe) is a periodic point.

The Dmap for N = 16 in Fig. 1 has one fixed point and
one PEO with period 3. The other 12 points are EPPs.

In order to consider the steady state dynamics, we in-
troduce two simple feature quantities. First, let Np be the
number of periodic points on N points. The first quantity is

Figure 1: A digital return map (Dmap) and distribution of
periods. The blue point is a fix point and P1 = 1/4. The red
orbit is a periodic obit (PEO) with period 3 and P2 = 3/4.
Black points are eventually periodic points (EPPs).
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the PEOs occupancy rate over the domain of the Dmap

α =
Np

N
,

1
N
≤ α ≤ 1 (2)

This quantity characterize plentifulness of steady states.
In order to define the second feature quantity, we define

several notations. Let a Dmap have Np pieces of periodic
points. Let Ne be the number of PEOs and let pi be the
period of the i-th PEO, i = 1 ∼ Ne. Let Pi = pi/NP where∑Ne

i=1 Pi = 1. {Pi} is referred to as a period distribution. The
second quantity γ is dispersion of periods of the PEOs.

γ =

Ne∑

i=1

P2
i ,

1
N
≤ γ ≤ 1 (3)

It can characterize variety of PEOs. If a Dmap has one
PEO then γ takes the maximum value γ = 1. If a Dmap has
N fixed points then γ takes the minimum value γ = 1/N.
In the Dmap in Fig. 1, one fixed point and one PEO with
period 3 correspond to P1 = 1/4 and P2 = 3/4, respec-
tively. Hence this Dmap is characterized by γ = 10/16 and
α = 4/16.

In order to consider the dynamics, the α versus γ feature
plane is constructed as shown in Fig. 2. On the α-γ feature
plane, we define three criterial objects for consideration of
the dynamics. The first criteria is defined for a Dmap in Fig.
2 (a): if a Dmap has only one PEO then (α, γ) is plotted on

Unique line lu: γ = 1 (4)

The second criterion is defined for a Dmap in Fig. 2
(b): if a Dmap has no EPP (no transient phenomenon) and
periodic points are dense then (α, γ) is plotted on

Dense line ld: α = 1 (5)

The third criterion is defined for a Dmap in Fig. 2 (d): if
all the PEOs are fixed points then (α, γ) is plotted on

Fixed point curve Cf : γ =
1

Nα
(6)

In the feature plane, we note three end points. If the
Dmap has only one fixed point such as Fig. 2(a) then it is
plotted at the left top point (α, γ) = (1/N, 1). If the Dmap
has N fixed points and has no EPPs such as Fig. 2(b) then
it is plotted at the right bottom point (α, γ) = (1, 1/N). If
the Dmap has one PEO with period N and has no EPP such
as an M-sequence in Fig. 2(c) then it is plotted at the right
top corner (α, γ) = (1, 1).

3. Cellular automata and digital return maps

We consider ECAs on the ring of M cells. Let xt
i ∈{0, 1} ≡ B be the binary state of the i-th cell at discrete time

t where i = 1 ∼ M. The time evolution of xt
i is governed by

a Boolean function of xt
i and its closest neighbors:

xt+1
i = Fi(xt

i−1 , x
t
i, x

t
i+1), i = 1 ∼ M (7)

Figure 2: Typical Dmaps for N = 16. (a) One fixed point.
(α, γ) = (1/16, 1). (b) 16 fixed points and no EPPs. (α, γ) =
(1, 1/16). (c) One PEO with period 16 (M-sequence) and
no EPP. (α, γ) = (1, 1). (d) Three fixed points. (α, γ) =
(3/16, 1/3). (e) α − γ feature plane. lu: Unique line. ld:
Dense line. cf : Fixed point curve.

where xt
−1 ≡ xt

M and xt
i+1 ≡ xt

1 on the ring. Fi is referred to
as a rule. In the ECA, Fi does not depend on i (Fi = F) and
the dynamics is defined by one rule

y0 = F(0, 0, 0), y1 = F(0, 0, 1), y2 = F(0, 1, 0)
y3 = F(0, 1, 1), y4 = F(1, 0, 0), y5 = F(1, 0, 1)
y6 = F(1, 1, 0), y7 = F(1, 1, 1).

(8)

where yj ∈ B and j = 0 ∼ 7. (y0, · · · , y7) is referred to as a
rule table and is equivalent to an 8 bits binary number that
is referred to as the rule number (RN) [5]. There exist 223

rules for the ECA.
Fig. 3 shows some of spatiotemporal patterns from

ECAs. Fig. 3(a) shows periodic pattern in the steady state
with period 8. Fig. 3(b) shows a transient pattern falls into
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Figure 3: Examples of spatiotemporal patterns. (a) RN30
(b) RN90 (c) RN36 (d) RN102

the steady state of all 0. Fig. 3(c) and (d) shows fixed pat-
terns in steady states. In order to analyze the dynamics, we
introduce the Dmap. That is, an ECA of M cells is equiva-
lent to the mapping from BM to itself:

xt+1 = FD(xt), xt ≡ (xt
1, · · · , xt

M) ∈ BM (9)

Since BM is equivalent to a set of 2M points ID ≡
{C1, · · · ,C2M }, FD is equivalent to the Dmap from ID to it-
self.

We focus on the case M = 8 (N = 2M = 256) in this
paper. Fig. 4(a) shows a Dmap and its PEO with peirod
8 corresponding to the spatiotemporal pattern in Fig. 3(a).
The Dmap has 5 PEOs as shown in the histogram. This
Dmap is characterized by (α, γ) = (0.2, 0.64) and plotted at
cross A in the feature plane in Fig. 5. The cross A corre-
sponds to the following 4 rules.

RS-A = {30, 86, 135, 149 } (10)

Fig. 4(b) shows a Dmap corresponding to the spa-
tiotemporal pattern in Fig. 3(b). The steady state is one
fixed point only. This Dmap is characterized by (α, γ) =
(0.004, 1) and plotted at cross B in the feature plane in Fig.
5. The cross B corresponds to the following 12 rules.

RS-B = {0, 8, 60, 64, 90, 102, 153,
165, 195, 239, 253, 255 } (11)

Fig. 4(c) shows a Dmap corresponding to the spatiotem-
poral pattern in Fig. 3(c). This Dmap has 21 fixed points.
This Dmap is characterized by (α, γ) = (0.08, 0.05) and
plotted at cross C in the feature plane in Fig. 5. The cross
C corresponds to the following 8 rules.

RS-C = {36, 44, 72, 100, 203, 217, 219, 237 } (12)

The spatiotemporal pattern in Fig. 3(d) corresponds to a
Dmap having 256 fixed points

x = F(x), x ∈ BM (13)

This Dmap is characterized by (α, γ) = (1, 0.004) and plot-
ted at cross D in the feature plane in Fig. 4 (e). The cross
D corresponds to only RN204.

In the feature plane, red points are plots of all the ECAs.
It suggests that the ECA can exhibit various dynamics even
in such a small case of M = 8.

4. Conclusions

In order to analyze steady states of Dmaps, two sim-
ple feature quantities and feature plane are presented in
this paper. Using the feature quantities, a simple class of
ECAs are analyzed. Future problems include more de-
tailed analysis of ECAs, analysis of mixed rule cellular
automata[10], and engineering applications such as infor-
mation compressions[6].
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Figure 4: Examples of Dmaps from ECAs. (a) RN30,
(α, γ) = (0.2, 0.64). Red points denote PEP. (b) RN90,
(α, γ) = (0.004, 1). (c) RN36, (α, γ) = (0.08, 0.05).

Figure 5: α − γ feature plane. lu: Unique line. ld: Dense
line. cf : Fixed point curve.
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