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Abstract—We construct optimum binary spreading se-
quences of Markov chains in terms of bit error proba-
bilities in asynchronous spread-spectrum multiple-access
(SSMA) communication systems based on discretized β-
transformations. We also evaluate the normalized auto-
correlation function for the optimum binary spreading se-
quences of Markov chains based on the discretized β-
transformations. The experimental results of the bit error
probabilities in the asynchronous SSMA communication
systems using the obtained sequences agree with the the-
oretical estimations of the bit error probabilities based on
the central limit theorem (CLT).

1. Introduction

Spreading sequences are a kind of pseudo-random num-
bers. It is one of the most crucial tasks in spread spectrum
techniques to realize the optimum spreading sequences in
terms of the performance of asynchronous spread-spectrum
multiple-access (SSMA) communication systems where
the sequences are used.

From the viewpoint of the performance of communica-
tion systems, it is bit error probabilities that are of the ut-
most importance as a measure of the reliability of the sys-
tems. The bit error probabilities in asynchronous SSMA
communication systems were estimated by using Gaussian
distributions whose variance was the average interference
parameter (AIP) that was introduced by Pursley in [1] as a
measure of the average signal-to-noise ratio (SNR) in asyn-
chronous SSMA communication systems. This is the so
called standard Gaussian approximation (SGA).

Chaotic spreading sequences are the sequences of
pseudo-random numbers generated by one-dimensional er-
godic transformations, which is one of the applications of
Ulam and von Neumann’s idea in [2]. It was found in [3]
that a class of chaotic spreading sequences whose auto-
correlations exponentially decay achieved a better perfor-
mance in terms of the mean value of the AIP 1 as com-
pared to Gold sequences whose auto-correlations are like a
delta function. This discovery created a revolution in de-

1The mean value of the AIP is averaged over spreading sequences as
random variables while the original AIP defined in [1] is a random variable
of spreading sequences.

signing spreading sequences since sequences whose auto-
correlations are like a delta function were commonly re-
garded as good sequences before the pioneering work. We
note here that the chaotic sequences proposed in [3] are
equivalent to the sequences generated by a class of Markov
chains.

While Pursley defined the AIP as a measure of the aver-
age SNR in asynchronous SSMA communication systems,
Yao pointed out in [4] that evaluations of bit error prob-
abilities based on the SGA with the AIP were not valid
for the systems with small numbers of users, low length of
pseudonoise (PN) sequences, and high SNRs, which natu-
rally posed the following questions: i) Why were evalua-
tions of bit error probabilities based on the SGA with the
AIP not valid for systems with small numbers of users and
low lengths of PN sequences? ii) How can one give simple
theoretical evaluations of bit error probabilities still valid
for systems with small numbers of users and low lengths of
PN sequences? These problems have often been discussed.

Motivated by the spreading sequences of Markov chains
proposed in [3], we have studied to determine the opti-
mum spreading sequences of Markov chains in terms of
bit error probabilities in asynchronous SSMA communi-
cation systems. As a result of a series of studies [5]–[8],
we have solved the above-mentioned Yao’s questions com-
pletely in virtue of the central limit theorem (CLT) together
with large deviations analysis.

We showed that the SGA with the mean value of the
AIP for estimations of bit error probabilities in such sys-
tems was the 0-th order approximation of the evaluation
based on the CLT. As far as binary spreading sequences are
concerned, correlational properties of the optimum spread-
ing sequences in terms of the mean value of the AIP ob-
tained in [9] coincide with the properties of the optimum
sequences in terms of the bit error probabilities in the sys-
tems based on the CLT. We remark here that the result in [9]
only gave correlational properties of the optimum spread-
ing sequences. It did not tell us how to design the optimum
spreading sequences in terms of the mean value of the AIP.

On the other hand, based on the CLT, we determined
k (≥ 2)-state Markov chains generating k-phase spread-
ing sequences that minimize bit error probabilities in asyn-
chronous SSMA communication systems in [6]. Moreover,
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we found a novel class of spreading sequences, namely
the phase-shift-free k (≥ 3)-phase spreading sequences, and
showed in [7] that the optimum phase-shift-free k-phase
spreading sequences of Markov chains were superior to the
optimum binary spreading sequences of Markov chains in
terms of the bit error probabilities in the system based on
the CLT.

Unfortunately, however, such existence of the optimum
sequences was theoretically determined and confirmed by
using the piecewise-linear Markov transformations with
the help of Monte-Carlo simulations. In fact, the optimum
sequences are not available for practical use like Gold se-
quences because the idea in [2] requires handling real num-
bers in its applications. More precisely, the round off errors
due to the truncation of real numbers occurs while iterating
the Markov transformations by using computers.

Under these unpromising circumstances, a breakthrough
was made in [10], where Bernoulli transformations were
suggested for SSMA communication systems. Inspired by
the results in [10], we defined discretized Markov transfor-
mations and found an algorithm to give the number of full-
length sequences based on the discretized Markov transfor-
mations in [11].

In [12], we defined the piecewise-monotone-increasing
Markov transformations, which included not only k (≥ 2)-
adic transformations but also Markov β-transformations.
Besides, without knowing the total number of full-length
sequences based on the discretized piecewise-monotone-
increasing Markov transformations, we gave the bounded
monotone truth-table algorithm for generating all full-
length sequences which were based on the defined dis-
cretized Markov transformations.

In this report, we construct optimum binary spreading
sequences of Markov chains in terms of bit error probabili-
ties in asynchronous SSMA communication systems based
on discretized β-transformations.

2. A Realization of Markov Chains with Prescribed
Correlation Properties Based on β-transformations

In terms of bit error probabilities in asynchronous SSMA
communication systems, the optimum k (≥ 2)-phase
spreading sequences of Markov chains were determined
in [7]. For the case where k = 2, the optimum binary
spreading sequences of Markov chains are characterized by
the sequence (Zn)∞n=0 of {1,−1}-valued stationary Markov

chains with E[Zn] = 0 and E[Z0Zℓ] =
(
−2 +

√
3
)ℓ

(ℓ ≥ 0).
For a random variable Z, we use E[Z] to denote the ex-
pected value of Z.

The correlation functions for sequences are measures
of the similarity, or relatedness, between two sequences.
Mathematically they are defined as follows.

Definition 1 The normalized cross-correlation function of
time delay ℓ for the sequences X = (Xi)N−1

i=0 and Y =

(Yi)N−1
i=0 over {1,−1} is defined by rN(ℓ; X,Y) = 1/N ·

∑N−1
i=0 XiYi+ℓ ( mod N), where ℓ = 0, 1, · · · ,N − 1 and, for in-

tegers a and b (≥ 1), a (mod b) denotes the least residue
of a to modulus b. If X = Y, we call rN(ℓ; X, X) the nor-
malized auto-correlation function, and simply denote it by
rN(ℓ; X).

In order to construct the sequence X with rN(ℓ; X) =(
−2 +

√
3
)ℓ

, we recall the notion of Perron numbers de-
fined in [13] as follows.

Definition 2 The number λ is a Perron number if i) λ is
a positive algebraic integer, and ii) λ > |µ| for all other
algebraic conjugates µ of λ. We use P to denote the set of
Perron numbers.

Let A be a non-negative integral matrix. If An > 0 for
some positive integer n, then A is called primitive, which
is equivalent to irreducible and aperiodic. For an primitive
matrix A, we use λA to denote the Perron-Frobenius eigen-
value of A. Thus the Perron number is characterized by the
following.

Theorem 1 (Lind [13]) λ ∈ P iff λ = λA for some primi-
tive A.

For our purpose, since the correlation function in ques-
tion has only one parameter, it suffices to consider λ ∈ P
with degree 2. The minimal polynomial of λ over Q is de-
fined by f (t) = t2−c1t−c2 where c1, c2 ∈ Z. Its companion

matrix of is given by B =
(
0 c2
1 c1

)
.Recall that the char-

acteristic polynomial and the minimal polynomial of B are
equal to f (t). In order to associate a β-transformation with
B , in what follows, we assume 0 < c2 ≤ c1.

The adjacency matrix A of the β-transformation T asso-
ciated with the above companion matrix B is given by

A =

c1+1︷                          ︸︸                          ︷
1 · · · 1 1 · · · 1



 c1
...
. . .

...
...
. . .

...
1 · · · 1 1 · · · 1
1 · · · 1 0 · · · 0︸       ︷︷       ︸

c2

.

For almost every x in [0, 1), the n-th iterate T n(x), where
T 0(x) = x and T n(x) = T n−1(T (x)) for n = 1, 2, · · · ,
together with a map Ψ : [0, 1) → {1,−1} defined by
Ψ (x) = 1 if x < c1/β and Ψ (x) = −1 otherwise, gen-
erates a sequence (Zn)∞n=0 of {1,−1}-valued Markov chain
by setting Zn = Ψ (T n(x)). Thus we obtain E[Z0Zℓ] ={(
λ + λ

)
/
(
λ − λ

)}2 − 4λλ/(λ − λ)2 ·
(
λ/ λ

)ℓ
(ℓ ≥ 0), where

λ is the algebraic conjugate of λ, the unique integral
solution (c1, c2) of an equation −2 +

√
3 = λ

/
λ ={

c1 −
√

c2
1 + 4c2

} / {
c1 +

√
c2

1 + 4c2

}
with 0 < c2 ≤ c1
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is given by c1 = c2 = 2. Eventually, we obtain the β-
transformation T with β = 1+

√
3 = λ which is the positive

solution of t2 − 2t − 2 = 0. The graph of T is given in Fig.
1.

0 11 2

1

β β

1
β

2
β

0 1 2

Figure 1: The β-transformation with β = 1 +
√

3.

Although we successfully obtain a sequence
of {1,−1}-valued stationary Markov chain with
E[Z0Zℓ] =

(
−2 +

√
3
)ℓ

(ℓ ≥ 0), we still have

E[Zn] = (λ + λ)/(λ − λ) = 1/
√

3 , 0 since the sta-
tionary distribution of the chain is given by (p1, p2) =
1/

(
λ − λ

)
· (−λ, λ) = 1/

(
2
√

3
)
·
(
−1 +

√
3, 1 +

√
3
)
,

which is not uniform.
In the next section, without changing the realized cor-

relational properties of the binary optimum spreading se-
quences of Markov chains, we transform the distribution
(p1, p2) of the sequences into the uniform distribution by
virtue of sliding block codes.

3. A Realization of Markov Chains with Prescribed
Correlation Properties with the Uniform Distribu-
tion Based on Discretized β-transformations

Let Σ be a finite alphabet. The full Σ-shift is denoted by
ΣZ = {x = (xi)i∈Z : ∀i ∈ Z, xi ∈ Σ} which is endowed with
the product topology arising from the discrete topology on
Σ. The shift transformation σ : ΣZ → ΣZ is defined by
σ((xi)i∈Z) = (xi+1)i∈Z. The closed shift-invariant subsets of
ΣZ are called subshifts.

We call elements u = u1u2 · · · un ∈ Σn blocks over Σ of
length n (n ≥ 1). We use ϵ to denote the empty block. For
a subshift X, we use Ln(X) to denote the collection of all
n-blocks appearing in points in X. The language of X is the
collection L(X) =

∪∞
n=0Ln(X), where L0(X) = {ϵ}.

A shift of finite type (SFT) is a subshift that can be de-
scribed by a finite set of forbidden blocks. For a given finite
set F of forbidden blocks, we use XF to denote the SFT.

The symbolic representation of β-expansions of real
numbers with β = 1 +

√
3, which is realized by the iterates

of the β-transformation T shown in Fig. 1, is given by the
SFT XF ⊂ ΣZ where Σ = {0, 1, 2} and F = {22}. Its graph
representation G is given in Fig. 2 which also represents T .

Setting G = G[2], we obtain a sequence (G[n])∞n=2 of
higher edge graphs of G. For each n ≥ 2, we use Hn
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Figure 2: The graph representation G of X{22}.

to denote the Eulerian subgraph spanning G[n] with max-
imal number of edges, whose Eulerian circuits are the full-
length sequences based on the discretized β-transformation
T with β = 1 +

√
3. In Fig. 2, we see that G is Eule-

rian. Thus we have G = G[2] = H2 in this case. In the
Eulerian subgraph H2, we obtain a full-length sequence
001021120 for instance. The length |Bn| of full-length
length sequences is given by |Bn| = βn + β

n
(n ≥ 2) in [14],

where β = 1 −
√

3, which is the algebraic conjugate of β.
Now we are in the position to construct the optimum bi-

nary spreading sequences of Markov chains based on the
discretized β-transformations with β = 1 +

√
3.

A total order relation ≤ on L(XF ) \ {ϵ} is defined by
the following: for any u = u1 · · · um (m ≥ 1) and v =
v1 · · · vn (n ≥ 1) in L(XF ), u ≤ v if and only if

u1

β
+

u2

β2 + · · · +
um

βm ≤
v1

β
+

v2

β2 + · · · +
vn

βn .

For simplicity, we use L to denote the length |Bn| of
full-length length sequences. We define a block code Φ :
{0, 1, 2}L → {1,−1} by for v = v1v2 · · · vL ∈ {0, 1, 2}L,

Φ(v) =


1 if v ≤ 02,
−1 if 02 < v ≤ 2,

1 if 2 < v.

We use S to denote the shift transformation on {0, 1, 2}L,
i.e., S (v1, v2, · · · , vL−1, vL) = (v2, v3, · · · , vL, v1) for v =
v1v2 · · · vL ∈ {0, 1, 2}L. Thus we obtain a sliding block code
ϕ for periodic sequences of period L defined by ϕ(v∞) =
(Φ(v)Φ(S v)Φ(S 2v) · · ·Φ(S L−1v))∞, where u∞ = · · · uuu · · ·
for a block u. The sliding block code ϕ transform the full-
length sequence over Σ = {0, 1, 2} based on the discretized
Markov β-transformation with β = 1+

√
3 into the optimum

binary spreading sequences of Markov chains as follows.
Let X be a full-length sequence over Σ = {0, 1, 2}

of length L = |Bn| based on the discretized Markov β-
transformation with β = 1 +

√
3. Thus the optimum bi-

nary spreading sequence of Markov chain is realized by
Y = Φ(X)Φ(S X)Φ(S 2X) · · ·Φ(S L−1X).

We here give an example of the optimum binary spread-
ing sequences of Markov chains of length |Bn|.

Example 1 For n = 3, we have L = 20 and

00010020110121021112
ϕ|ΣL
−−−→ 11101011001010010001,
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where in the right hand side, we use 0 to denote −1 for
simplicity.

Applying the previous results in [15] to the optimum bi-
nary spreading sequences of Markov chains, we have

Theorem 2 For 0 ≤ ℓ ≤ n − 1, we obtain

r|Bn |(ℓ; Y) = (−2 +
√

3)ℓ

+


(
β

β

)ℓ
−

 β
β

ℓ ·
 β
β

n / 1 +
 β
β

n .
This implies r|Bn |(ℓ; Y) = E[Z0Zℓ] + O

((
β
β

)n)
, where O is

the big O notation from the Landau symbol.

4. Experimental Results

A short table of values of the length |Bn|, the total num-
ber νn of the full-length sequences over {0, 1, 2} in Hn, and
the total number ν̃n of the realized optimum binary spread-
ing sequences of Markov chains are given in Table 1, re-
spectively.

Table 1: A short table of values of |Bn|, νn, and ν̃n.
n length # of seq.s # of seq.s w/ uniform dist.
2 8 12 6
3 20 1728 945

Fig. 3 shows the theoretical estimations based on the
CLT given in [5] and the experimental results of bit er-
ror probabilities in asynchronous SSMA communication
systems using the realized optimum binary spreading se-
quences of Markov chains based on the discretized β-
transformations as a function of the number of users J for
N = 56. In this figure, the experimental results and the the-
oretical estimations based on the CLT agree properly with
each other.

experimental results

theoretical estimations

number of users
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Figure 3: The bit error probabilities.
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