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Abstract– Bouncing ball system is often used for 

describing collision dynamics of various mechanical 

systems. We produced the experimental bouncing ball 

equipment using a ping-pong ball, a table tennis paddle 

with rubber and a shaker for vibrating the paddle. In this 

study, we investigate frequency responses of the bouncing 

ball system under constant paddle amplitude condition 

and constant paddle acceleration amplitude condition 

experimentally, and compare our experimental results 

with simulations. Under constant amplitude condition, we 

found that the maximum height of the ball increases 

stepwise as varying the paddle frequency by both 

experiment and simulation. Under constant acceleration 

amplitude condition, we found the maximum height of the 

ball decreases exponentially as varying the vibrated plate 

frequency by both experiment and simulation. 

Summarizing the above, we observed the nonlinear 

characteristics that the height of ball increases stepwise in 

simple bouncing ball system.  

 

1. Introduction 

 

Generally, most mechanical systems have gaps, such as 

a pair of gears with backlash. In these systems, nonlinear 

vibrations by collision phenomenon often occur. A 

bouncing ball system is effective to explain these 

nonlinear vibrations on collision systems. 

The bouncing ball system can be applied to various 

mechanical systems. For example, M. Paskota analyzed 

and controlled collision vibration of a molding box during 

in aluminum production [1]. K.Sakai et al. analyzed 

dynamics of the tractor on the rigid road using a bouncing 

ball model [2]. As experimental studies, A.Kini et al 

studied the impact vibration when a super ball collided 

with a fixed table with rubber [3]. 

We produced the bouncing ball equipment using a ball 

and a paddle for table tennis [4]. Our equipment had the 

advantage that frictional resistance for the ball was small. 

However, the vibration direction of the paddle caused a 

slight error, hence the unbalanced support of the paddle. 

The paddle is fixed to a shaker at its handle and vibrated. 

This way distorted the vertical direction of the surface of 

the racket collided with the ball.      

In this study, we improve our previous bouncing ball 

equipment. The surface of paddle is fixed at the center of 

shaker, in order to keep precise vertical vibration of the 

paddle. Next, we carry out the frequency response  

experiments under both constant amplitude condition and 

constant acceleration amplitude condition, then we 

compare these experimental results with our simulation 

results. 

 

2. Experimental setup 
 

Fig.1 shows the photograph of our experimental setup 

we produced. Fig.2 shows the schematic illustration of the 

equipment. The device consists of four parts mainly, i.e. a 

ping-pong ball, a paddle for table tennis, a ball guide and 

a shaker. The shaker vibrates the paddle periodically to the 

vertical direction. The ball is vibrated by the paddle, and 

jumps on the paddle. The displacement of the ball is 

measured by a sensor 1, which is a laser displacement 

sensor LK-G405 produced by Keyence corporation. The 

ball guide consists of a pair of top and bottom plates and 

four stainless steel poles fixed between the plates. The ball 

guide limits the horizontal movement of the ball by the 

method surrounding with four stainless steel poles whose 

diameter is 3mm in order to keep the ball at the same 

position of the paddle. There is a hole to let the ball go 

through, whose diameter is 40mm, at the center of the top 

plate and the bottom plate. The four stainless steel poles 

are set around the hole at intervals of 90degrees. The 

distance between the top and the bottom plate is 300mm, 

they are supported with four support pillars whose length 

are 767mm. The displacement of the paddle is measured 

by a sensor 2, which is a laser displacement sensor LK-

G155 produced by Keyence corporation. The positive 

direction of the sensors is upward. When the ball stops, 

the distance of the ball and the sensor 1 is 400mm. The 

mass of the ball is each 2.8g. The diameter of the ball is 

39.8mm.   

 Fig.3 shows the paddle vibration control system. The 

system is feedback controlled by vibration controller K2 

sprint, which is produced by IMV corporation. The 

vibration controller is able to control the acceleration, 

velocity, and amplitude of the paddle by using the signal 

from the acceleration pickup fixed on the paddle.  
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Fig.1 Photograph of experimental setup 

 

Fig.2 Illustration of experimental setup 

  

3. Simulation 

 

3.1. Bouncing ball model 

 

Fig.4 shows physical model of the bouncing ball 

system that we use in this study. 1m  denotes the mass of 

the ball. 1x  and 2x denote each the displacement of the 

ball and the paddle. The motion equations are defined by 

Eq.1. 









tax

gmxm

sin02

111
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            (1)  

The parameters in Eq.1 are shown as follows: g  is the 

gravitational acceleration,   is the angle frequency of the  

                

 

Fig.3 Paddle vibration control system 

 

Fig.4 Bouncing ball model 

  

paddle, 
0a is amplitude of the paddle. When

21 xx  the ball 

collides with the paddle. Suppose 
12 mm  , where 2m  

is the mass of the paddle. Therefore, the change of the 

velocity of the ball
1x is given by 

211 )1( xexex                                           (2) 

where 
1x and 

1x is the velocity of the ball before and 

after impact. 

The parameters used in the simulation are as follows: 

e =0.68, 1m =2.8 g, 0a =0.69 mm, g =9.8m/s2． 

 

3.2. Simulation condition 

 

  In this paper, we use Runge-Kutta-Gill 4th order Method 

with time step (128 f )-1, transient number 100,000 and 

data number 100,000.  

The velocity and acceleration of the paddle are defined 

by Eq.3 and 4. 

tax  cos02                                            (3)                          

tax  sin2

02                (4)                          

By defined the acceleration amplitude
max20 xA   as 

Eq.4 can be rearranged to Eq.5. 
2

00 aA                                       (5)                                 
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(a)  Constant amplitude 
  

(b)  Constant acceleration amplitude 

Fig.5 Experimental and simulation results 

  

4. Experimental and Simulation result 

 

In this section, we investigate frequency responses of 

our bouncing ball system. Increasing frequency of the 

paddle f  from 20Hz to 50Hz by 1Hz, we measure the 

maximum value of the displacement of the ball max1x  in 

each frequency. We carry out two types of the frequency 

response experiment. One is the experiment while keeping 

the paddle amplitude   0a uniformity, which is called as 

constant amplitude condition. The other is this while 

keeping the acceleration amplitude 0A uniformity, which 

is called as constant acceleration. We determine 

0a =0.69mm under constant amplitude condition, 

0A =35m/s2 under constant acceleration. 

Fig.5(a) shows experimental and simulation results 

under constant amplitude condition. The vertical axis 

indicates the maximum displacement of the ball max1x , 

and the horizontal axis indicates the frequency of the 

paddle f . Both experimental and simulation result, the 

graphs show stepwise increase of max1x as varying the 

paddle frequency f .  

Fig.5(b) shows experimental and simulation result 

under acceleration displacement constant. Both 

experimental and simulation result, the graphs show 

 
Fig.6 Bifurcation diagram under constant amplitude 

  

(a)  f =28Hz 
  

(b)  f =32Hz 

Fig.7 Poincare map 

 

exponential decrease of max1x as varying the paddle 

frequency f . The trend of increasing max1x under 

constant amplitude condition in Fig.5(a) can be explained 

by Eq.6. 

 fax a  0const.max2 0
                           (6) 

 Eq.6 indicates that maximum velocity of the paddle 

max2x is proportional to f . Similarly, the trend of  
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decreasing max1x under constant acceleration amplitude 

condition in Fig.5(b) can be explained by Eq.7 

fAax A /1/00const.max2 0
            (7) 

Eq.7 indicates that 
max2x  is inversely proportional to 

f . Bouncing height of the ball depends on the velocity of 

the paddle when the ball colliding the paddle. Hence, 

under constant amplitude condition, according to Eq.6, 

max1x  monotonic increases, and constant acceleration 

amplitude condition, according to Eq.7, max1x monotonic 

decreases. However the stepwise increasing of 

max1x under constant amplitude condition in Fig.5(a) 

cannot be explained by Eq.6. We suppose that the trend of 

stepwise increasing is caused by nonlinear characteristics 

in our simple bouncing ball system.  

 

5.   Poincare map in constant amplitude 

 

In this section, we detailed simulation for previous 

results in Fig.5(a). 

Fig.6 is the bifurcation diagram under constant 

amplitude condition, in the case when the paddle 

frequency f is increased from 20Hz to 50Hz by 0.05Hz. 

In Fig.6, the trend of stepwise increase of max1x is clearer 

than the graph of the simulation result in Fig.5(a). We 

suppose that the bifurcations are occurred at the 

intermittent points like stepwise. Next, we investigate the 

dynamics of our system when the frequency is before and 

after bifurcation, f =28Hz and 32Hz.  

 Fig.7 shows Poincare maps under constant amplitude 

condition shown by Fig.6. Fig.7(a) and (b) show the 

Poincare map at 28Hz and 32Hz, i.e. before and after 

bifurcation. The Poincare map in Fig.7(a) shows three 

regions of Poincare plots, A, B and C. In contrast, Fig.7(b) 

shows four regions, A, B, C, and D. The region D is 

occurred by the bifurcation. Therefore, we suppose that 

there are the bifurcations which keep the dynamics and 

add new region. 

 

6.   Summary 

 

In this study, we investigated the dynamics of a 

bouncing ball system, which was consisted of a ball and a 

paddle for table tennis, experimentally and numerically. 

The paddle was vibrated by a shaker.  

 First, we improved our previous bouncing ball 

equipment and was capable of more precision experiments.  

 Second, we carried out frequency response 

experiments under two types of condition.   One was the 

constant amplitude condition, which was keeping the 

amplitude of the paddle as varying the frequency of the 

paddle by vibration control system. The other condition 

was the constant acceleration amplitude condition, which 

was keeping the acceleration amplitude of the paddle. 

Under the constant amplitude condition, our experiment 

showed the maximum height of ball increased stepwise. 

Same trend was shown by our numerical simulation. 

Calculated Poincare maps showed occurrence of new 

region of Poincare plots surrounding stepwise increasing 

points.  

 As a result, we supposed that there was the bifurcations 

which kept the conventional structure of the dynamics and 

added new structure in the simple bouncing ball system. 
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