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Abstract—In this study, we propose a stability analysis
method for the linear impact oscillators. First, we show
a two-dimensional linear impact oscillator. Next, we de-
fine the periodic solution and explain its stability. Then,
we propose a stability analysis method using the Filippov’s
theory. Finally, we apply the method to a rigid overhead
wire-pantograph system for confirming validity of the pro-
posed method.

1. Introduction

The impact oscillation is observed in various fields of the
engineering. In the mechanical field, for example, most of
the component impacts with the other component [1, 2]. In
the ecological and biological field, the simplified models,
such as the forest fire model and the spiking neuron model,
are proposed using the impact characteristics for rigorously
understanding property of them [3, 4]. Generally, these
systems are categorized as the impact oscillator. Since the
impact oscillator is used in various field of engineering, it
is important to clarify the fundamental characteristics of
them.

It is known that the bifurcation phenomena are observed
in the impact oscillators upon varying the parameters such
as the coefficient of restitution between the mass points
and frequency and amplitude of the external force [5]. Be-
cause of the dynamic behavior of the system qualitatively
changes via the bifurcation phenomena, it is important to
determine the bifurcation parameter for designing the op-
timal parameter of the system. Generally, for determining
the bifurcation parameter of the impact oscillators, we have
to calculate stability of the orbit. Some stability analysis
methods are proposed: the Poincaré map approach [5, 6]
is well-known stability analysis method in the field. In ad-
dition, we should not forget that the Yoshitake’s algorithm
[7], because it might be a first stability analysis method for
the impact oscillators. In theory, we can calculate stability
of the periodic orbit of almost all of the impact oscillators
using these stability analysis methods. But, it is not easy
for most of the engineers, who are not specialist of the bi-
furcation analysis, to calculate stability of the orbit due to
the complicated algorithm and its technical implementation
process. For solving these problems, we focus on a stabil-
ity analysis method using the Filippov’s theory [8]. The

advantage of the method is its simplicity. We do not have
to derive the Poincaré map and its derivative. The motion
equations, the switching condition and the information of
the orbit at the switching surface are only needed to the
method. But, the Filippov’s method is only available for
the impact oscillators with the fixed border [9]. There is
many impact oscillators with the moving border [1, 2, 10],
and therefore, it is valuable to propose the stability analysis
method for them using the Filippov’s theory. As the first
step to construct the stability analysis method, using the
Filippov’s method, for the n-dimensional impact oscilla-
tors with the moving border, we have proposed the method
for the two-dimensional impact oscillator with the moving
border [11]. However, the method is only available for the
fixed point.

In this study, we improve the method for calculating the
stability of the periodic orbit of the two-dimensional im-
pact oscillators with the moving border. First, we show the
behavior of the waveforms of the two-dimensional impact
oscillator with the moving border. Note that we consider
the periodic border for the simplicity. Then, we explain the
Floquet theory [12] for understanding stability of the peri-
odic orbit. Next, we discuss the monodromy matrix, which
is a key of the method. Finally, we apply the proposed
method to the rigid overhead wire-pantograph system. We
will confirm the validity of the proposed method and its
advantage.

2. The proposed method

2.1. The two-dimensional impact oscillator

The motion equation is given by

ẋ = Ax + B, (1)

where A and B are the 2 by 2 subsystem matrix and
x = (x, v)>. x denotes the displacement and v denotes the
velocity of the mass. Let a moving (periodic) border S (t)
be

S (t) = a sinωt. (2)

When the impact phenomenon occurs between the mass
and border, the velocity of the mass changes from v− to
v+ instantly.
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We briefly explain the Floquet theory [12] for under-
standing stability of the orbit. Let the period-m orbit as

x(0) − x(mT ) = 0, (3)

where x(t) is the solution of Eq. (1), and T denotes the
period of the border. Let the period-m orbit, which satisfies
Eq. (3), be x∗(t). The perturbation, between the period-m
orbit x∗(t) and its closed-orbit x(t) at t = 0, is expressed as:

∆x0 = x∗(0) − x(0). (4)

Likewise, that of at t = mT is

∆xm = x∗(mT ) − x(mT ). (5)

Figure 1 shows an image of the period-m orbit and its
closed-orbit of the two-dimensional impact oscillator with
the periodic border. The relationship between ∆x0 and ∆xm

is expressed as:
∆xm = M∆x0, (6)

where
M = M0 ◦ M1 ◦ . . . ◦ Mm−1 (7)

is a 2 by 2 matrix. The matrix M is called as the mon-
odromy matrix and characteristic multipliers of the mon-
odromy matrix µ1 and µ2 is called as the Floquet multipli-
ers. If the Floquet multipliers satisfies |µ1| < 1 and |µ1| < 1,
the period-m orbit is stable and otherwise unstable. In the
following analysis, we discuss the monodromy matrix, i.e.,
how to calculate M = M0 ◦ M1 ◦ . . . ◦ Mm−1. Note that the
two-dimensional impact oscillator and stability of the orbit
have already been explained in Ref. [11]. However, we are
not able to explain the proposed theory without them, and
therefore, we explain them again in this paper.

2.2. The monodromy matrix of the period-m orbit

We consider the perturbation of the orbit shown in Fig.
1. The red orbit denotes the period-m orbit. The mass im-
pacts with the border l times. An example of the impact

*x(0)

∆x-

∆x+

v
x

x(0)

x(mT)

+x(t )

+
*x (t )

*x -(t )

-x(t )

Figure 1: Example of the orbit.

phenomenon is shown in the right-hand side in Fig. 1. Let
an impact point of the period-m orbit as x∗(t̂). Since the
velocity of the mass jumps from v− to v+ via the impact,
the orbit x∗(t̂)− jumps to x∗(t̂)+. Likewise, the perturbed
orbit x(t), whose initial value x(0) is close to x∗(0), reaches
to the impact point at t = t̄ and orbit jumps from x(t̄)− to
x(t̄)+. Here, the perturbations of the orbit ∆x− and ∆x+,
just before and after the impact phenomenon occurs, are
expressed as

∆x− = x∗(t̂)− − x(t̄)−, (8)

∆x+ = x∗(t̂)+ − x(t̄)+. (9)

Thus, the perturbation via the impact phenomenon is de-
fined as

∆x+ = S∆x−, (10)

where a 2 by 2 matrix S is called as the saltation matrix.
The monodromy matrix of the period-m orbit is de-

fined as Eq. (7). We derive Mn as an example, where
n = 1, 2, . . . ,m − 1. Here, we assume the impact occurs
only once for the sake of the simplicity; of course we can
derive Mn if the impact occurs k times. Under this situa-
tion, a part of the monodromy matrix Mn is expressed as
follows:

Mn = eA(T−t̄)SeAt̄, (11)

where we use Taylor expansion for calculating eAt. So, the
stability of the period-m orbit of the impact oscillators with
the periodic border can calculate using

det (µI2 − M) = 0, (12)

where I2 is the unit matrix and µ is the Floquet multipliers
(characteristic multipliers). Note that we can calculate the
stability of the system with fixed border using the same
algorithm if we assume a = 0 in Eq. (2).

3. Stability analysis using the proposed method

We apply the method to a two-dimensional impact oscil-
lator [10] shown in Fig. 2. The system composes a spring,

mass

damper
spring

d

x ,  

0

 S(t)

overhead wire

pantograph

Figure 2: A two-dimensional impact oscillator.
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damper and mass. The mass impacts with the oscillating
object (border). The motion equation of the mass is given
by































dx
dt

= v

dv
dt

= −x − 2ζv
, (13)

where ζ, x and v denote the damping ratio, displacement
and velocity of the mass, respectively. The motion equation
(displacement) of the border is expressed as

S (t) = ε sinωt + 1, (14)

where ε andω are the amplitude and the angular frequency.
Figure 3 shows behavior of the waveforms; x(t) and v(t)

denote the displacement and velocity of the mass. If the
mass impacts with the border, the velocity of the mass
changes from v− to v+ instantly. Here, the coefficient of
restitution between the mass and border is expressed as

α =

v+ −
dS (t)

dt
dS (t)

dt
− v−
. (15)

Thus, the relationship between the velocities v− and v+ are
described as

v+ = −αv− + (1 + α)
dS (t)

dt
. (16)

Figure 4 shows the 1-parameter bifurcation diagram
upon varying the frequency of the border ω as the bifur-
cation parameter. Note that we sample the data at every
period of T = 2π/ω and get the 1-parameter bifurcation di-
agram; an image of the sampled data is shown as the white
points in Fig. 3. We can observe that the period-1 orbit bi-
furcates to the period-2 orbit aroundω = 6.15 and period-2
orbit bifurcates to the period-4 orbit around ω = 6.42. In
the figure, the bifurcation points are shown as PD1 and PD2

where index numbers mean the periodicity of the orbit con-
cerning with the bifurcation phenomenon. In the following

0

1

x(t)

t
0

v(t)

0 T 2T 3T 4T

Figure 3: The behavior of the waveforms.

analysis, we calculate stability of the period-1 and period-2
orbit as the examples.

The monodromy matrix for the period-1 orbit is ex-
pressed as

M = eAt̄iSeAt̄′i . (17)

Likewise, that for the period-2 orbit is expressed as

M = M0 ◦ M1, (18)

where M0 = eAt̄iSeAt̄′i M1 = eAt̄i SeAt̄′i . In Eqs. (17) and
(18), the saltation matrix S is described as

S =





























1 −
v− − v+

v− − ωε cosωt̄i
0

−
g(t̄i)

v− − ωε cosωt̄i
−α





























, (19)

where g(t̄i) is

g(t̄i) = α (x̄(t̄i) + 2γv−) + (x̄(t̄i) + 2γv+)

− (1 + α)ω2ε sinωt̄i.
(20)

A time t̄i is a critical time when the mass, which starts at
time kT , impacts with the border; t̄′i satisfies t̄′i = T − t̄i. In
addition, the subsystem matrix A is given by

A =














0 1

−1 −2γ















. (21)

The stability of the periodic orbits are calculated based on
Eq. (12).

Tables 1 and 2 show the characteristic multipliers of the
period-1 and period-2 orbit. Note that we calculate the
characteristic multipliers using the Poincaré map approach
[5, 6] for comparing with the proposed method (see Ta-
ble 1). Table 2 says that the period doubling bifurcation
occurs at ω = 6.1459 and ω = 6.4188. The bifurcation
points seems to be correct in the 1-parameter bifurcation
diagram (see Fig. 4). Moreover, the accuracy of calcula-
tion can be said good. So, we conclude that the proposed

 1

 1.1

 1.2

 6  6.1  6.2  6.3  6.4  6.5

x k→

ω→

PD1

PD2

Figure 4: The 1-parameter bifurcation diagram (α = 0.5,
ε = 0.068, ζ = 0.4).
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Table 1: Analytical results of the Poincaré map approach (α = 0.5, ε = 0.068, ζ = 0.4).

Period-1 Period-2
ω µ1 µ2 Remarks ω µ1 µ2 Remarks

6.1350 -0.1123 -0.9803 Stable period-1 orbit 6.4050 -0.0145 -0.8923 Stable period-2 orbit
6.1400 -0.1114 -0.9893 Stable period-1 orbit 6.4100 -0.0139 -0.9318 Stable period-2 orbit
6.1450 -0.1105 -0.9983 Stable period-1 orbit 6.4150 -0.0132 -0.9715 Stable period-2 orbit
6.1459 -0.1103 -1.0000 PD1 6.4185 -0.0130 -1.0000 PD2

6.1500 -0.1096 -1.0072 Unstable period-1 orbit 6.4200 -0.0129 -1.0112 Unstable period-2 orbit

Table 2: Analytical results of the proposed method (α = 0.5, ε = 0.068, ζ = 0.4).

Period-1 Period-2
ω µ1 µ2 Remarks ω µ1 µ2 Remarks

6.1350 -0.1124 -0.9805 Stable period-1 orbit 6.4050 -0.0146 -0.8931 Stable period-2 orbit
6.1400 -0.1114 -0.9895 Stable period-1 orbit 6.4100 -0.0140 -0.9330 Stable period-2 orbit
6.1450 -0.1105 -0.9984 Stable period-1 orbit 6.4150 -0.0134 -0.9710 Stable period-2 orbit
6.1459 -0.1103 -1.0000 PD1 6.4188 -0.0131 -1.0000 PD2

6.1500 -0.1096 -1.0074 Unstable period-1 orbit 6.4200 -0.0129 -1.0104 Unstable period-2 orbit

method is able to calculate the stability of the periodic orbit
of the two-dimensional impact oscillators with the periodic
border. In addition, we should not forget that the propose
method do not need the Poincaré map and its derivative.
It is easy to derive the Poincaré map and its derivative in
the low-dimensional impact oscillators. But, in the high-
dimensional impact oscillators [1], derivation and its im-
plementation processes of them will be very complicated.
Thus, we believe that the proposed method, which do not
require the Poincaré map and its derivative, will be an ef-
fective stability analysis method for the impact oscillators.

4. Conclusion

In this study, we have proposed a stability analysis
method for the two-dimensional linear impact oscillators
with periodic border. The proposed method has simple al-
gorithm compared with the previous method [5, 6], and the
accuracy of calculation of the proposed method can be said
good. So, we conclude that the proposed method, will be
an effective stability analysis method for the impact oscil-
lators. The future work is to improve the method for the
n-dimensional impact oscillators.
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