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Abstract— is introduced. An algorithm of a deterministic inductive
Inductive SearcHor solving global optimization prob- search using a one-dimensional global search is shown in
lems has attracted much attention because it showed tBect. 4 Finally, concluding remarks are given8ect. 5
best performance at the 1st ICEO. However, since details
of this method are not clear, the method has not received PRELIMINARIES
much attention. We investigated details of the method and L . )
implemented the method. We propose a modified induc-  9'obal optl_rnlzanonnproblem that minimizes (min.) an
tive search by using a deterministic one-dimensional glonIEJeCtLV_e functionf : R" — R subject to (s.t.) constrains
search. Finally, we evaluate the performance of the implé2 X' is formulated as follows

mented method and that of proposed method. min. : f(X)= F(X0, Xas - - - X)s
n
1. INTRODUCTION (Pn) s.t. ¢ (Xl, Xo, ..., Xn) e D= H[Li, Ui] cR"
i=1
Global optimization problemnt(global) minimize f (x) = _ o .
f(X1,..., %) : R"— R under the constrainie S c R™is In this problem we assume that objective functibiis

widely formulated as mathematical models and is applied Morse function, that isf is 2nd continuous dieren-

in many fields. Many methods for solving continuousiable and Hessian matrix®f(x") at critical pointx” (s.t.

global optimization problems have been proposed [1], andf (x’) = 0) is non-degenerate (i.¢7f(x*)| # 0). Then,

these methods are classified inteterministiciramework, the following two properties hold: a) all local minima of

stochastidramework ancheuristicframework. the problem (F) are isolated and bf) has a convex region
The deterministic frameworf2] repeatedly divides a &round acritical poink”.

given region into subregions and selects a subregion in

which a global optimum is included. Tistochastic frame- 3. INDUCTIVE SEARCH

work[3] involve random sampling or a combination of ran-

dom sampling and local search [4]. On the other hand, the1- Algorithm and its Implementation

heuristic frameworke.g., SA[5], GA[6], PSO[7]) have

been intensively since the latter half of the 1980s and h

been applied many fields. However, most of these metho mber of variables. The pseuda-€implementatio of

have no g'uarantees to find a global optimal solution. the overall structure of the idea is given as follows.
Searching spaces of all of those frameworks exponen-
tially increase with increase in the number of dimensions #include "t1.c" // tl: Sphere nv. problem
in the problem (P). This phenomenon, known as these 2 main0O { _
of dimensionality; led to the abandonment of those searc} int iter_count=9, int n; .
. . .. for (int i=0; i<n; i++) oracle(i+1);
methods in favor of ones using someriori knowledge or 5
priori structure of the functiori.
Inductive searchwas proposed[8] at “the 1st interna-Fig.1l: Main code for calling inductive searekacle(..).
tional contest on evolutionary optimisation” and the searc . .
. y optim Pn the above code, the argumentl of oracle(i+1) de-
has achieved an best result in this contest[9]. However, : )
. . notes the number of dimensions on proceditracle, and
since details of the method were not clear, the method has ; o
. iIincreases by 1 untih — 1. For a problem, this is easy to
not attracted much attention recently. ) . .
The purpose of this paper is to introduce the origin chieve even by till treating them as black boxes, because
inductiv?a spearchand to rgcgnstruct themodified inducti\?e he test function is defined in terms of two parameters, the
: L number of dimensions and a vector of the input variables:
searchusing our univariate global search[13].
The remainder of the paper is organized as follows. A fOa), f0a. %), ..
formulation and assumptioqs of the prqblem are given in 1 ater codes are simplified codes of the original code(1, 2)] with main-
Sect. 2 In Sect. 3 the algorithm of the inductive search tenance of logical structure.

The most novel idea of the method is to solve a sub-
toblem (™ (k= 1,2, ...,n) inductivelyby increasing the
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At a later stage, i.e., when solvingdX, ..., %), the or- 1  float fiv(float y) {

acle can “update” a previous answer by changing the val-  x[nvDim-1] = y; .

ues ofx; to x_1. This is necessary because when the ora- igiiﬂfi: £0x,nvDim);

cle solvesf(xy, ..., %-1), it has no knowledge of how thiss '

function will be updated td (xy, .. ., X). Fig.4: An auxiliary routine of a one-dimensional function
The 1st line of Fig.1 is an include file f@phere prob-

lem, and the C-code of the filetl.c” is shownin Fig.2. 32 proplems of an Inductive Search

1 #define STP_C 0

2 #define LEARN O Since the inductive search has not been followed, a
3 #define L -5.0 pseudo-code is flicult to implement for the following rea-

4 #define U 5.0

5 float f(float *x,int nv) { sons.

6 int i; float S; _ s 1) These codes use many global constants (STp,C,

g fZiuﬁi:?ég)f i=0; i<nv; i++) S+=x[il*x[il; LEARN, L andu) and variables (e.gny andx[] in Fig 4.).

9 3 ' 2) Searching regions andu are all fixed for any test prob-

Fig.2.: Content of C-codel.c for Sphere problem  lemoffiles"tj.c"(j=1,2...,5).

Bilchev[8] proposed a simple (deterministic) version of3) oracle(..) needs steps supported by LEDA[12].
oracle that obtained very good results in the 1st ICEO test) If STP_C=0, then the above LEDA-steps are unneces-
problems. The pseudo+@ implementation of the basic sary andglobal learningis not performed.
algorithm is shown in Fig.3.

1 void oracle(int nv) {

2 int count=0; 4. MODIFIED INDUCTIVE SEARCH

3 float xmin,FMIN=1e30,xmin,XMIN;
4 float ax=L,cx=U,bx=(ax+cx)/2; 4.1. One-Dimensional Global Search Algorithm

5 sortseq<float,Interval> Pop; seq_item S;

6 Interval I; I.L=ax; I.U=cx; The algorithm finds the minimunx* of i-th variables
7 Pop.insert(cx-ax,I); . - s . - .

8  /* Global learning */ and its function valud **for an objective functiorfi(x) at
9 while (1) { thei-th variable on a closed intervBi=[L;, U;] for a given
10 S=Pop.max(); Pop.del item(S); I=Pop.inf(S); step sizeh and an already found global minimur{*; =
11 ax=I.L; cx=I.U; bx=(ax+cx)/2; (x*,...,x). The steps of the algorithm are as follows.
12 fmin=bren(ax,bx,cx,flv,TOL,&xmin) ;
13 if (fmin < FMIN) { FMIN=fmin; XMIN=xmin; } (£ x*) < Go.1DimSrch( f;, Di, h, x;*));
14 /% --- omission --- */ GL1 i itiali -
15 count++; - [Initialize]
16 if (count > STP_C) break; Xpe—0; Fpe=0; Ne[(Ui-L)/hl;
a4 O fL); D fiLrhix); o
18 /* Local learning */ GL2. [Find three neighboring points with bracketing of a
19 x[nv-1]=xmin; local minimum]
20 if ( (LEARN) && (nv > 1) ) local_learn(fl,x,nv); .
21 3} for _J:2toNdo_ _

] . ) XD — L+ J h, f) = fI(X(l)’Xl*jl),
Fig.3: An implementation of the oracle. if f0-2s §0-D and f0-D<f0 then

. . . Xp e Xp U {(xU-2), x0-D_ x(D)}:
In this code, the 5th, 7th and 10th lines denote services Fo e Fou (102 103 §0))

of LEDA[lZ] If STP_C= 0, then the 11th line is equivalent if fi-De f~** then fﬁ**(—f(j_l) . )?i**‘_x(j_l) i
to "ax=L; cx=U; bx=(L+U)/2;" from the 4th and 6th lines. fi ' ' ' '
In this case, these LEDA steps are unnecessary. od:

oracle(..) consists of two main steps: GL3. [Apply local minimization]
S1)Global learning which is a search for a better solution  ppiy univariate local minimizatio:oMinv(.).
at the current dimension than the previous best solution(s); (£, X*) — LOMin1v(Fp, X, fi, f**, %, TOL) ;
S2)Local learning10], which annv-(sub) dimensional lo- return (£ x*);

cal searchosrch(..). - - -
In this implementation, the global learning is a series of !n @ one-dimensional global sea@b_1DimSrch(), the

calls Brent’s local optimizer routineren(..), and its ex- following property holds[13].

ternal specification of the routine is as follows:

Property 1 Let the lower unimodal region of the global

minimum x* of f(x) on an interval [, U] be Rux™),

) i ) where Rux*™) is defined as the maximum region. Then,

where (*£1v) (float) is a routine for computing the func- it , < 1/2 . min{x*- a, b — x**} holds, the algorithm

tion value of one variableax, bx andcx are 3-neighbor Go_1DimSearck) E\Iways finds the global minimum* of

points. The routinéren(..) has finished, local minimum: ¢,nction f(x). -

xmin and its function valuémin are returned at 12th line.
C-code file:*f1v. c” of C-function is shown Fig.4.

float bren(float ax, float bx, float cx,
float (*flv)(float), float TOL, *xmin);

An example of unimodal regioRux**) and step sizé&
is shown in Fig.5.
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Ru(z**)

(3) Shekel (multimodal, non-separable):

30
1
min.: f(x) =- _—
(Pg) ) ,le lIx — all? + ¢
s.t.:  x€[0,10]"; n=5,10.

(4) Michalewicz (multimodal, separable):

) min.: f(x) = Zsm(x.)smzo( )
M
s.t.:  xe€[0,7]"; n=5,10.

min{g*}*f a, b—z**}

-

‘ : —~ § (5) Langerman (multimodal, non separable):
L a g™ b U . Lilx-ai12 2
Fig. 5: Unimodal regiorRu(x**) and step sizé Py MmN 00 = _Z ( COS(””X_a‘” ))

s.t.: xeg[0, 10]n n=>510
4.2. Modified Inductive Search Algorithm

. . . . 5.2. Implementation
The algorithm finds the global minimuri* and its func-

tion valuef‘* for an objective functiorf (x) of n-variables The inductive search and its modified search are imple-
with searching regio®" = []7_, D; = [L;, U;] foragiven ~mented in programming language C (MinGW gcc 3.4.5).

step sizen. The steps of the algorithm are as follows. All numerical experiments for which results are shown in
™ ) — GonbimSrch f. i D" h.ToL)- this paper were carried on an Lenovo note PC Think Pad
(17 x7) < o.,n 'm_ reh(f, n, D% h, TOL); X250 (2.6GHz Intel Core i7-5600) with double precision.
Glf' [PerforT °”e'd(;me”5'°”a' global search] Setting parameters of inductive searches for five test
Or( f~nY = )tigo ]c_)DIerCh(f Do b %0.): functions are shown the Table 1.
nys Nys ’ . . .
X;: = (X;* ,,,,, )~ K U{%); od; ' Table 1: Setting parameters for inductive searches
G2. [Apply local m|n|m|zat|on] Function STP.C LEARN | h
Apply local minimizerLoMin(-) to starting pointy; and its Sphere 0 0 1
function valuef. B Griewank 0 0112
(1", x) = LoMin(f, ny, fyy, &y, TOL); Shekel's foxholes| 1 1/02
rewrn (£, x"); Michalewicz 10 002
Langerman 2 1|02
4.3. Comparisons between the Original Inductive In this table, if the parametarp_c = 0, thenglobal learn-
o Search and Our Modified Search ing becomes #ocal searchbecause of one-dimensional lo-

cal searchbren(..) executing only one for each calling
We show comparisons between the original inductiveracle(mv), (nv=1,2,...,n) fromsect. 3.2 Fromsect. 4.3

search algorithm (O) and our algorithm (M) as follows.  the number of callingren(. .) is nin this case.

(0) Number of callingoracle...) (see Fig.1) n 5.3. Comparison between Inductive Searches and the
Number of callingbrenc. .) (see Fig.3) n-(STP.C+1) Other Methods

(M) Number of callingGo_1DimSrch(..) : n

(O) Number of callinglocal learn(..) : Nn-LEARN, Comparisons between the number of callings in the orig-
where the value afEARN is O or linal inductive searches and the number of callings in the
(M) Number of calling LoMin(..) : 1 other methods is shown in Table 2.

Table 2: Benchmark results for the inductive search and

5. NUMERICAL EXAMPLES the other 7 methods in the 1st ICEO w.r.t. the number

) of callingw (N:N€: our implemented inductive search, the
5.1. Benchmark Functions of 1st ICEO[9] original inductive search anid® of the other 7 methods)
The following five objective functions with two cases of Function n N°/N¢ N¢
dimensionsii = 5, 10) at the 1st ICEO are presented. Sphere 5 2520 243-12,218
(1) Sphere (unimodal, separable)' Sphere 10 5040 243-85,692
) ) Griewank-1 5 6311 5,765-2,977,996
(pyyd Min 109 = Z(Xu -9, Griewank-2 10 1409  6,446-2,110,889
st: xe[-5, 5] s=1 n=510 Shekel 5 41574  6,318-451,992
Shekel 10 853120 6,075-4,440,948
(2) Griewank (multimodal with convex skeleton, non-separable): “Michalewicz 5 18320  1,877-60,219
n . N
min.: 92 { ) ‘L Michalewicz 10 44801 10,083-20,233,341
(Pe) 40002()Q & Vi Langerman 5 47176  4,131-232,496
s.t.: xe[-60Q GOOP s= 10(1 n=>510. Langerman 10 89372 26,973-15,727,653
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We can see that the number of callings for both inductiv&he number of function evaluations of an implemented in-
searches are much smaller than those of the other 7 mettuctive search for Sphere and Griwank functions is very
ods. small, because the parameters of Sphere and Griewank

functions are set taTP_C=0 andLEARN =0 (i.e., global
5.4. Result for Original Inductive search in ICEO and  and local learningof an inductive search is not a valid.)
Our Implemented Inductive Search Our modified inductive search finds better minima for

Benchmark result of the original inductive search in the™ problems and with a smaller the number of function

1st ICEO[9] and our inductive search are shown in Table fvaluatmns for six problems than does the implemented in-

. ) ductive search.
Table 3: Benchmark results of two inductive searches

w.r.t. obtained minimal function values and the numbe(r3 Conclusi
of callings (f**(N°): original andf “(N°): our implementa- °- onclusion

tion.). . ' _ In this paper, we showed a clearer and more detailed
Function n (N9 (N9 algorithm based on C-code or&-code of anan induc-
Sphere 5 388x107(20) 0(25) tive searchby Bilchev's implementation. We propose an
Sphere 10 710x 10°%5(40) 0(50)

algorithm for a modified inductive search using a one-
dimensional global search and we evaluated the algorithm.
Both algorithms become deterministic methods because a

Griewank 5 799x10°%(41) 109x107 (68)
Griewank 10 131x10°°(79) 620x 107 (140)
Shekel 5 _10327 (74) _ —10400 (415)

Shekel 10 ~10101(120) ~10208 (853) rgndom number generator is not used.ll.\/loreover, the one-
Michalewicz 5 —4.69 (120) —4.49(183) d|mens.|onal global search of our modn‘leq method has_a
Michalewicz 10 ~9.66 (501) ~875(448) Fheoretlcal gugrantee that the method can find a global min-
Langerman 5 —1499 (176) ~0.965 (471) imum. Numerical examples show that our modified method

Langerman 10 -1.499 (372) ~0.076(892) can be reliably find a global minimum.

The original inductive search finds global minima for all
ten problems, but our implemented inductive search cannot
find global minima for five problems. [1] Neumaier, A.: “Global Optimization,’2015.

Since Griewank’s problem is a multimodal function, 1) www.mat.univie.ac.at/ neum/glopt/
and the parametesTP_C=0 and LEARN =0 (i.e., global 2) www.mat.un%v:.Le.ac.at/~neum/glopt/s<.)ftware_g.html
and local learningof an inductive search is not a valid.), 5) W¥.mat.univie.ac.at/ neun/glopt/bilchev/Readme

. . . L. [2] C.A. Floudas: “Deterministic Global Optimization: theory,
our implemented search fails to find the global minimum™ "~ o 4o and applications,” Kluwer, 2000.

x*=(1,...,1). On the other hand, Original code"t2.c” [3] Torm, A. andZilinskas, AQ “Global Optimization,” Lecture
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