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Abstract—
Inductive Searchfor solving global optimization prob-

lems has attracted much attention because it showed the
best performance at the 1st ICEO. However, since details
of this method are not clear, the method has not received
much attention. We investigated details of the method and
implemented the method. We propose a modified induc-
tive search by using a deterministic one-dimensional global
search. Finally, we evaluate the performance of the imple-
mented method and that of proposed method.

1. INTRODUCTION

Global optimization problem: “(global) minimize f (x)≡
f (x1, . . . , xn) : Rn→R under the constraint :x∈S ⊂ Rn” is
widely formulated as mathematical models and is applied
in many fields. Many methods for solving continuous
global optimization problems have been proposed [1], and
these methods are classified intodeterministicframework,
stochasticframework andheuristicframework.

The deterministic framework[2] repeatedly divides a
given region into subregions and selects a subregion in
which a global optimum is included. Thestochastic frame-
work[3] involve random sampling or a combination of ran-
dom sampling and local search [4]. On the other hand, the
heuristic framework(e.g., SA [5], GA [6], PSO [7] ) have
been intensively since the latter half of the 1980s and has
been applied many fields. However, most of these methods
have no guarantees to find a global optimal solution.

Searching spaces of all of those frameworks exponen-
tially increase with increase in the number of dimensions
in the problem (P). This phenomenon, known as the “curse
of dimensionality”, led to the abandonment of those search
methods in favor of ones using somea priori knowledge or
priori structure of the functionf .

Inductive searchwas proposed[8] at “the 1st interna-
tional contest on evolutionary optimisation” and the search
has achieved an best result in this contest[9]. However,
since details of the method were not clear, the method has
not attracted much attention recently.

The purpose of this paper is to introduce the original
inductive searchand to reconstruct themodified inductive
searchusing our univariate global search[13].

The remainder of the paper is organized as follows. A
formulation and assumptions of the problem are given in
Sect. 2. In Sect. 3, the algorithm of the inductive search

is introduced. An algorithm of a deterministic inductive
search using a one-dimensional global search is shown in
Sect. 4. Finally, concluding remarks are given inSect. 5.

2. PRELIMINARIES

A global optimization problem that minimizes (min.) an
objective functionf : Rn→ R subject to (s.t.) constrains
Dn⊂Rn is formulated as follows

(Pn)


min. : f (x)≡ f (x1, x2, . . . , xn),

s. t. : (x1, x2, . . . , xn) ∈ Dn≡
n∏

i=1

[Li ,Ui ] ⊂ Rn.

In this problem we assume that objective functionf is
a Morse function, that is,f is 2nd continuous differen-
tiable and Hessian matrix∇2 f (x∗) at critical pointx∗ (s.t.
∇ f (x∗) = 0) is non-degenerate (i.e.,|∇2 f (x∗)| , 0). Then,
the following two properties hold: a) all local minima of
the problem (Pn) are isolated and b)f has a convex region
around a critical pointx∗.

3. INDUCTIVE SEARCH

3.1. Algorithm and its Implementation

The most novel idea of the method is to solve a sub-
problem (Pk) (k = 1,2, . . . ,n) inductivelyby increasing the
number of variables. The pseudo-C++ implementation1 of
the overall structure of the idea is given as follows.

1 #include "t1.c" // t1: Sphere nv. problem

2 main() {

3 int iter_count=0, int n;

4 for (int i=0; i<n; i++) oracle(i+1);

5 }

Fig.1: Main code for calling inductive searchoracle(..).

In the above code, the argumenti+1 of oracle(i+1) de-
notes the number of dimensions on procedureoracle, and
i increases by 1 untiln− 1. For a problem, this is easy to
achieve even by till treating them as black boxes, because
the test function is defined in terms of two parameters, the
number of dimensions and a vector of the input variables:

f (x1), f (x1, x2), . . .

1Later codes are simplified codes of the original code[1, 2)] with main-
tenance of logical structure.
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At a later stage, i.e., when solvingf (x1, . . . , xi), the or-
acle can “update” a previous answer by changing the val-
ues ofx1 to xi−1. This is necessary because when the ora-
cle solvesf (x1, . . . , xi−1), it has no knowledge of how this
function will be updated tof (x1, . . . , xi).

The 1st line of Fig.1 is an include file forSphere prob-
lem, and the C-code of the file ”t1.c” is shown in Fig.2.

1 #define STP_C 0

2 #define LEARN 0

3 #define L -5.0

4 #define U 5.0

5 float f(float *x,int nv) {

6 int i; float S;

7 for (S=0.0, i=0; i<nv; i++) S+=x[i]*x[i];

8 return (S);

9 }

Fig.2.: Content of C-code:t1.c for Sphere problem

Bilchev[8] proposed a simple (deterministic) version of
oracle that obtained very good results in the 1st ICEO test
problems. The pseudo-C++ implementation of the basic
algorithm is shown in Fig.3.

1 void oracle(int nv) {

2 int count=0;

3 float xmin,FMIN=1e30,xmin,XMIN;

4 float ax=L,cx=U,bx=(ax+cx)/2;

5 sortseq<float,Interval> Pop; seq_item S;

6 Interval I; I.L=ax; I.U=cx;

7 Pop.insert(cx-ax,I);

8 /* Global learning */

9 while (1) {

10 S=Pop.max(); Pop.del_item(S); I=Pop.inf(S);

11 ax=I.L; cx=I.U; bx=(ax+cx)/2;

12 fmin=bren(ax,bx,cx,f1v,TOL,&xmin);

13 if (fmin < FMIN) { FMIN=fmin; XMIN=xmin; }

14 /* --- omission --- */

15 count++;

16 if (count > STP_C) break;

17 }

18 /* Local learning */

19 x[nv-1]=xmin;

20 if ( (LEARN) && (nv > 1) ) local_learn(fl,x,nv);

21 }

Fig.3: An implementation of the oracle.

In this code, the 5th, 7th and 10th lines denote services
of LEDA[12]. If STP_C= 0, then the 11th line is equivalent
to "ax=L; cx=U; bx=(L+U)/2;" from the 4th and 6th lines.
In this case, these LEDA steps are unnecessary.
oracle(..) consists of two main steps:

S1)Global learning, which is a search for a better solution
at the current dimension than the previous best solution(s);
S2)Local learning[10], which annv-(sub) dimensional lo-
cal search:losrch(..).

In this implementation, the global learning is a series of
calls Brent’s local optimizer routine:bren(..), and its ex-
ternal specification of the routine is as follows:

float bren(float ax, float bx, float cx,

float (*f1v)(float), float TOL, *xmin);

where(*f1v)(float) is a routine for computing the func-
tion value of one variable.ax, bx andcx are 3-neighbor
points. The routinebren(..) has finished, local minimum:
xmin and its function value:fmin are returned at 12th line.

C-code file:”f1v.c” of C-function is shown Fig.4.

1 float f1v(float y) {

2 x[nvDim-1] = y;

3 float res = f(x,nvDim);

4 return res;

5 }

Fig.4: An auxiliary routine of a one-dimensional function

3.2. Problems of an Inductive Search

Since the inductive search has not been followed, a
pseudo-code is difficult to implement for the following rea-
sons.

1) These codes use many global constants (e.g.,STP_C,
LEARN, L andU) and variables (e.g.,nv andx[] in Fig 4.).
2) Searching regionsL andU are all fixed for any test prob-
lem of files ”t j.c” ( j = 1,2 . . . , 5).
3) oracle(..) needs steps supported by LEDA[12].
4) If STP_C=0, then the above LEDA-steps are unneces-
sary andglobal learningis not performed.

4. MODIFIED INDUCTIVE SEARCH

4.1. One-Dimensional Global Search Algorithm

The algorithm finds the minimumx∗∗i of i-th variables
and its function valuef ∗∗for an objective functionfi(x) at
the i-th variable on a closed intervalDi≡[Li ,Ui ] for a given
step sizeh and an already found global minimumx∗∗i−1=

(x∗∗1 , . . . , x
∗∗
i−1). The steps of the algorithm are as follows.

( f ∗∗i , x∗∗i )←Go 1DimSrch( fi , Di , h, x∗∗i−1) ;

GL1. [Initialize]
Xb←∅ ; Fb←∅ ; N←⌈(Ui−Li) / h⌉ ;
f (0)← fi (L) ; f (1)← fi (L+ h; x∗∗i−1) ; f ∗∗i ←∞.

GL2. [Find three neighboring points with bracketing of a
local minimum]
for j = 2 to N do

x( j)← L + j · h ; f ( j) = fi(x( j); x∗∗i−1) ;
if f ( j−2)> f ( j−1) and f ( j−1)< f ( j) then

Xb←Xb ∪ {(x( j−2), x( j−1), x( j))} ;
Fb← Fb ∪ {( f ( j−2), f ( j−1), f ( j))} ;
if f ( j−1)< f̃ ∗∗i then f̃ ∗∗i ← f ( j−1) ; x̃∗∗i ←x( j−1) ; fi .

fi .
od ;

GL3. [Apply local minimization]
Apply univariate local minimization:LoMin1v(·).
( f ∗∗i , x∗∗i )← LoMin1v(Fb,Xb, fi , f̃ ∗∗, x̃∗∗, TOL) ;
return ( f ∗∗i , x∗∗i ) ;

In a one-dimensional global searchGo 1DimSrch(·), the
following property holds[13].

Property 1 Let the lower unimodal region of the global
minimum x∗∗ of f (x) on an interval [L,U] be Ru(x∗∗),
whereRu(x∗∗) is defined as the maximum region. Then,
if h ≤ 1/2 · min{ x∗∗− a, b − x∗∗} holds, the algorithm
Go 1DimSearch(·) always finds the global minimumx∗∗ of
function f (x).

An example of unimodal regionRu(x∗∗) and step sizeh
is shown in Fig.5.
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Fig. 5: Unimodal regionRu(x∗∗) and step sizeh

4.2. Modified Inductive Search Algorithm

The algorithm finds the global minimumx∗∗ and its func-
tion value f ∗∗ for an objective functionf (x) of n-variables
with searching regionDn ≡∏n

j=1 D j ≡ [L j ,U j ] for a given
step sizeh. The steps of the algorithm are as follows.

( f ∗∗, x∗∗ )←Go nDimSrch( f , n, Dn, h , TOL) ;

G1. [Perform one-dimensional global search]
for nv = 1 to n do

( f̃ ∗∗nv
, x̃∗∗nv

)←Go 1DimSrch( fnv , Dnv , h, x̃∗∗nv−1) ;
x̃∗∗nv
≡ (x̃∗∗1 , . . . , x̃

∗∗
nv

)← x̃∗∗nv−1 ∪ {x̃∗∗nv
} ; od ;

G2. [Apply local minimization]
Apply local minimizer:LoMin(·) to starting point̃x∗∗nv and its
function valuef̃ ∗∗nv .
( f ∗∗, x∗∗)← LoMin( f ,nv, f̃ ∗∗nv , x̃

∗∗
nv, TOL) ;

return ( f ∗∗, x∗∗ ) ;

4.3. Comparisons between the Original Inductive
Search and Our Modified Search

We show comparisons between the original inductive
search algorithm (O) and our algorithm (M) as follows.

(O)

{
Number of callingoracle(..) (see Fig.1) :n
Number of callingbren(..) (see Fig.3) :n·(STP C+1)

(M) Number of callingGo 1DimS rch(..) : n
(O) Number of callinglocal learn(..) : n · LEARN,

where the value ofLEARN is 0 or 1.
(M) Number of calling LoMin(..) : 1

5. NUMERICAL EXAMPLES

5.1. Benchmark Functions of 1st ICEO[9]

The following five objective functions with two cases of
dimensions (n = 5, 10) at the 1st ICEO are presented.

(1) Sphere (unimodal, separable):

(Pn
S)

 min.: f (x) =
n∑

i=1

(xi − s)2,

s.t. : x∈ [−5, 5]n; s= 1, n = 5, 10.

(2) Griewank (multimodal with convex skeleton, non-separable):

(Pn
G)

min.: f (x)=
1

4000

n∑
i=1

(xi−s)2−
n∏

i=1

cos

 xi−s
√

i

+1,

s.t. : x∈ [−600,600]n; s= 100, n = 5, 10.

(3) Shekel (multimodal, non-separable):

(Pn
S)

 min.: f (x) = −
30∑
i=1

1
∥x − ai∥2 + ci

,

s.t. : x∈ [0, 10]n; n = 5, 10.

(4) Michalewicz (multimodal, separable):

(Pn
M)

 min.: f (x) = −
n∑

i=1

sin(xi) sin20

 ix2
i

π

,
s.t. : x∈ [0, π]n; n = 5, 10.

(5) Langerman (multimodal, non-separable):

(Pn
L)

 min.: f (x) = −
30∑
i=1

ci

e1
π ∥x−ai ∥2cos

(
π ∥x−ai∥2

),
s.t. : x∈ [0, 10]n; n = 5, 10.

5.2. Implementation

The inductive search and its modified search are imple-
mented in programming language C (MinGW gcc 3.4.5).
All numerical experiments for which results are shown in
this paper were carried on an Lenovo note PC Think Pad
X250 (2.6GHz Intel Core i7-5600) with double precision.

Setting parameters of inductive searches for five test
functions are shown the Table 1.

Table 1: Setting parameters for inductive searches

Function STP C LEARN h
Sphere 0 0 1
Griewank 0 0 1.2
Shekel’s foxholes 1 1 0.2
Michalewicz 10 0 0.2
Langerman 2 1 0.2

In this table, if the parameterSTP_C=0, thenglobal learn-
ing becomes alocal searchbecause of one-dimensional lo-
cal searchbren(..) executing only one for each calling
oracle(nv), (nv=1,2,. . . ,n) fromsect. 3.2. Fromsect. 4.3,
the number of callingbren(..) is n in this case.

5.3. Comparison between Inductive Searches and the
Other Methods

Comparisons between the number of callings in the orig-
inal inductive searches and the number of callings in the
other methods is shown in Table 2.

Table 2: Benchmark results for the inductive search and
the other 7 methods in the 1st ICEO w.r.t. the number
of callingw (Nc:Ñc: our implemented inductive search, the
original inductive search andNc

r of the other 7 methods)

Function n Ñc/Nc Nc
r

Sphere 5 25/20 243-12,218
Sphere 10 50/40 243-85,692
Griewank-1 5 68/41 5,765-2,977,996
Griewank-2 10 140/79 6,446-2,110,889
Shekel 5 415/74 6,318-451,992
Shekel 10 853/120 6,075-4,440,948
Michalewicz 5 183/120 1,877-60,219
Michalewicz 10 448/501 10,083-20,233,341
Langerman 5 471/176 4,131-232,496
Langerman 10 892/372 26,973-15,727,653
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We can see that the number of callings for both inductive
searches are much smaller than those of the other 7 meth-
ods.

5.4. Result for Original Inductive search in ICEO and
Our Implemented Inductive Search

Benchmark result of the original inductive search in the
1st ICEO[9] and our inductive search are shown in Table 3.

Table 3: Benchmark results of two inductive searches
w.r.t. obtained minimal function values and the number
of callings ( f ∗∗(Nc): original andf̃

∗∗
(Ñc): our implementa-

tion. ).
Function n f ∗∗ (Nc) f̃

∗∗
(Ñc)

Sphere 5 3.88× 10−15 (20) 0 (25)
Sphere 10 7.10× 10−15 (40) 0 (50)
Griewank 5 7.99× 10−6 (41) 1.09× 10−1 (68)
Griewank 10 1.31× 10−6 (79) 6.20× 10−1 (140)
Shekel 5 −10.327 (74) −10.400 (415)
Shekel 10 −10.101 (120) −10.208 (853)
Michalewicz 5 −4.69 (120) −4.49 (183)
Michalewicz 10 −9.66 (501) −8.75 (448)
Langerman 5 −1.499 (176) −0.965 (471)
Langerman 10 −1.499 (372) −0.076 (892)

The original inductive search finds global minima for all
ten problems, but our implemented inductive search cannot
find global minima for five problems.

Since Griewank’s problem is a multimodal function,
and the parameterSTP_C= 0 and LEARN= 0 (i.e., global
and local learningof an inductive search is not a valid.),
our implemented search fails to find the global minimum
x∗∗ = (1, . . . , 1). On the other hand, Original code”t2.c”
of Griewank’s function sets = 0, the original search
oracle(..) can find the global minimumxmin=0 because
bx=(L+U)/2=0.

5.5. Results of Inductive Search and Modified Induc-
tive Search

The result between our implemented inductive search
and our modified inductive search are shown Table 4.

Table 4: Benchmark results of implemented induc-
tive search and modified inductive searches w.r.t. ob-
tained minimal function values and the number of call-
ing ( f̃

∗∗
(Ñc): inductive search andf ∗∗

M
(Ñc

M): modified in-
ductive search. ).

Function n f̃
∗∗

(Ñc) f̃
∗∗
M

(Ñc
M)

Sphere 5 0 (25) 0 (61)
Sphere 10 0 (50) 0 (121)
Griewank 5 1.09×10−1 (68) 3.20×10−11 (5,043)
Griewank 10 6.20×10−1(140) 2.12×10−10 (10,167)
Shekel 5 −10.404 (415) −10.404 (315)
Shekel 10 −10.208 (853) −10.208 (510)
Michalewicz 5 −4.490 (183) −4.689(169)
Michalewicz 10 −8.745 (448) −9.160(407)
Langerman 5 −0.01 (362) −0.820(355)
Langerman 10 −3.4×10−5(807) −0.813(682)

The number of function evaluations of an implemented in-
ductive search for Sphere and Griwank functions is very
small, because the parameters of Sphere and Griewank
functions are set toSTP_C= 0 and LEARN= 0 (i.e., global
and local learningof an inductive search is not a valid.)

Our modified inductive search finds better minima for
six problems and with a smaller the number of function
evaluations for six problems than does the implemented in-
ductive search.

6. Conclusion

In this paper, we showed a clearer and more detailed
algorithm based on C-code or C++-code of anan induc-
tive searchby Bilchev’s implementation. We propose an
algorithm for a modified inductive search using a one-
dimensional global search and we evaluated the algorithm.
Both algorithms become deterministic methods because a
random number generator is not used. Moreover, the one-
dimensional global search of our modified method has a
theoretical guarantee that the method can find a global min-
imum. Numerical examples show that our modified method
can be reliably find a global minimum.
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