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Abstract—The dynamic mode decomposition is a re-
cently proposed algorithm for the mode decomposition of
mixed-mode time series data based on the dynamical sys-
tems theory. The kernelization of this algorithm improves
the estimation accuracy of dynamic modes, and therefore,
facilitates wide-range applications of this method, while
the optimal hyper-parameter selection for kernel dynamic
mode decomposition still remains an open question. Here,
we propose a formula for the hyper-patameter selection,
and demonstrate the validity of our selection method.

1. Introduction

Dynamic mode decomposition (DMD) [1] is a recently
proposed mode decomposition method for mixed-mode
time series data. The advantage of this method is that it
can directly take into account the latent dynamics of time
series. In the field of fluid mechanics, for example, a con-
ventional method called the proper orthogonal decompo-
sition has been widely used, which performs the principal
component analysis to reduce the dimensionality of time
series, and does not take into account the latent dynamics.
Since the DMD can capture the latent dynamics, it is use-
ful for modeling the latent dynamics in terms of dynamical
systems theory.

Although the computation of dynamic modes in the
DMD is no more than a linear transformation, i.e., the
DMD neglects the nonlinearity of time series, the theoreti-
cal basis of the DMD based on the Koopman operator can
deal with nonlinear latent dynamics underlying time series,
so the nonlinear extension of the DMD is expected to sig-
nificantly enhance the potential of this method. Then, the
extended DMD [2] and the kernel DMD [3] have been pro-
posed. The extended DMD [2] is a modified version of the
DMD that can approximate the Koopman operator more
precisely by nonlinear regression. In addition, the kernel
DMD [3] improves the computational efficiency of the ex-
tended DMD by what we call “kernel trick”. Although the
original DMD needs significantly high-dimensional time
series data, e.g., simulation data in fluid mechanics, the ex-
tended and kernel DMDs can be applied to a wider class
of time series. Therefore, these extensions are expected to
significantly widen the applicability of the DMD.

However, the selection of optimal hyper-parameters of
the extended and kernel DMDs still remains an open ques-
tion. Since the selection of hyper-parameters deeply affects
the estimation accuracy of the eigenvalues and eigenfunc-
tions of the Koopman operator, it is important to establish
the selection method for hyper-parameters. In this paper,
we propose a selection method [4] for hyper-parameters
of the kernel DMD, and demonstrate the validity of this
method through numerical experiments.

2. Kernel dynamic mode decomposition

To begin with, we introduce a linear operator called
the Koopman operator that gives a theoretical basis to the
DMD. The DMD is an algorithm that computes the eigen-
values and eigenfunctions of the Koopman operator, which
are used for the mode decomposition of time series.

We consider a discrete-time stationary dynamical sys-
tem, described by

xt+1 = F (xt), (1)

where xt ∈ Ω is a vector of state variables at time t and
F (x) is a map that represents the dyanamics of this system.
Here, let f(x) (x ∈ Ω) be an element of an appropriate
functional space F . The Koopman operator K correspond-
ing to the system of Eq. (1) is defined as follows:

Kf(x) = f(F (x)), (2)

that is, the Koopman operator K maps any function f(x) ∈
F to a composite function f(F (x)). This operator can be
interpreted as a time-shift operator that acts on an observ-
able f(x), because the following relation holds:

Kf(x)
∣∣
x=xt

= f(xt+1). (3)

The difinition of the Koopman operator can be natu-
rally extended to stochastic dynamical systems. Instead of
Eq. (1), we here consider a stationary Malkov process:

xt+1 ∼ p(xt+1|xt) (4)
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In this case, the Koopman operator is defined as a condi-
tional expectation as follows:

Kf(x) =

∫
Ω

f(x′)p(x′|x)dx′ (5)

Since the Koopman operator is a linear operator, we can
consider the spectral decomposition of this operator. In the
DMD, the Koopman operator is approximated only by dis-
crete eigenpairs called point spectrum. Each discrete eigen-
value λi (i = 1, 2, 3, . . .) of the Koopman operator has a
corresponding eigenfunction ξi(x) such that

Kξi(x) = λiξi(x). (6)

By using the eigenfunctions {ξi(x)}, the time series of
state variables xt can be decomposed as follows:

xt =
∞∑
i=1

ciξi(xt), (7)

where {ci ∈ Ω} is appropriate coefficients such that x =∑
i ciξi(x). In addition, if the dynamics of xt is determin-

istic, the time series xt can be written as a sum of sinu-
soidal waveforms as follows:

xt =
∞∑
i=1

ciλ
t
iξi(x0). (8)

Note that we neglected decaying amplitude components in
Eq. (8) under the assumption of stationarity.

In the kernel DMD, the eigenvalues {λi} and eigenfunc-
tions {ξi(x)} of the Koopman operator can be computed
from time series data of state variables {x1,x2, . . . ,xn}
by the following procedure. This algorithm has two hyper-
parameters, the kernel parameter θk and the regularization
parameter θr. The kernel parameter represents the width
of a kernel function. For example, we can use the Gaus-
sian kernel with bandwidth parameter θk, i.e., k(x,x′) =
exp(−

∑
i |x(i) − x′(i)|2/θk).

1. Computation of (n−1)×(n−1) matrices K,L whose
(i, j)-th element Kij , Lij is given by

Kij = k(xi,xj), Lij = k(xi,xj+1). (9)

2. Singular value decomposition of K:

K = UΣV ⊤, (10)

where U = [u1, . . . ,un−1], V = [v1, . . . ,vn−1] are
orthogonal matrices, and Σ is a diagonal matrix whose
diagonal elements are σ1 ≥ . . . ≥ σn−1.

3. Let n′ be the number of singular values that covers
100− θr percents of the square sum of the all singular
values of K. We approximate K by the n′ largest
singular values as

K ≈ Ũ Σ̃Ṽ ⊤ (11)

where Ũ = [u1, . . . ,un′ ], Ṽ = [v1, . . . ,vn′ ], and
Σ̃ is a diagonal matrix whose diagonal elements are
σ1 ≥ . . . ≥ σn′ .

4. Computation of Ã (= Ũ⊤LK−1Ũ ):

Ã = Ũ⊤LṼ Σ̃−1. (12)

5. Eigendecomposition of Ã⊤. Let {λi}, {qi} (i =
1, . . . , n′) be the eigenvalues and eigenvectors of Ã⊤.

6. Computation of the eigenfunctions of the Koopman
operator, {ξi(x)}, as follows:

ξi(x) = q⊤
i Ũ

⊤ϕ(x), (13)

where ϕ(x) = [k(x,x1), . . . , k(x,xn−1)]
⊤.

Note that we introduced the regularization with hyper-
parameter θr (steps 2–4), which is not included in Williams
et al [3].

3. Criterion for parameter selection

In this section, we derive a criterion for selecting two
hyper-parameters of the kernel DMD, the kernel parame-
ter θk and the regularization parameter θr. We evaluate the
error between the exact and estimated Koopman operators,
and select the two hyper-parameters that minimize the esti-
mation error.

In order to evaluate the estimation error, we introduce the
mean square error between the exact and estimated Koop-
man operators, K and K̂, as follows:

MSE =

∫
Ω

∫
Ω

{p(x|x′)− p̂(x|x′)}2q(x′)dxdx′, (14)

where p̂(x|x′) is the estimated conditional probability as-
sumed implicitly in the algorithm of the kernel DMD, and
q(x) is the stationary probability density of the state x.
In Eq. (14), we calculate a square error (

∫
Ω
{p(x|x′) −

p̂(x|x′)}2dx) and its expectation value with respect to x′,
so we call Eq. (14) the mean square error. The advantage
of this criterion is that it is plausible to approximately com-
pute it only from data. For example, the Hilbert-Schmidt
norm of K − K̂ is a possible alternative of Eq. (14), but it
is difficult to compute it only from data.

Equation (14) cannot be evaluated only by time series
data, because it includes the unknown exact probability
density p(x|x′). Then, from Eq. (14), we derive a cost
function that can be evaluated only by time series data. We
can rewrite Eq. (14) as follows:

MSE =

∫
Ω

∫
Ω

{p(x|x′)}2q(x′)dxdx′

− 2

∫
Ω

∫
Ω

p(x|x′)p̂(x|x′)q(x′)dxdx′

+

∫
Ω

∫
Ω

{p̂(x|x′)}2q(x′)dxdx′. (15)
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(a) Time series.
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(b) Phase portrait. (c) Cost function.

Figure 1: (a,b) Time series data used in the numerical experiment, and (c) the cost function Ĉ for 0.05 ≤ θk ≤ 5 and
0.005 ≤ θr ≤ 0.5. The parameter sets A, B and C depicted in the figure are used as examples in the following.
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(a) Exact.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x(1)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
(2

)

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

(b) KDMD (A: optimal kernel).
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(c) KDMD (B: narrower kernel).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x(1)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
(2

)

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

(d) KDMD (C: wider kernel).

Figure 2: Real part of the second Koopman eigenfunction (∝ ei[phase] ).

Since the first term of the right hand side of Eq. (15) does
not depend on the hyper-parameters, we define a cost func-
tion C as follows:

C = MSE−
∫
Ω

∫
Ω

{p(x|x′)}2q(x′)dxdx′

= −2

∫
Ω

∫
Ω

p(x|x′)p̂(x|x′)q(x′)dxdx′

+

∫
Ω

∫
Ω

{p̂(x|x′)}2q(x′)dxdx′. (16)

The cost function C can be approximately evaluated by
time series data {x̃1, . . . , x̃ñ} that is not used for the es-
timation of the Koopman operator as follows:

Ĉ = − 2

ñ− 1

ñ−1∑
i

p̂(x̃i+1|x̃i) +
1

ñ

ñ∑
i

∫
Ω

{p̂(x|x̃i)}2dx.

(17)

Here, the estimated conditional probability p̂(x|x′) as-
sumed implicitly in the kernel DMD can be derived as fol-
lows (see Ref. [4] for derivation):

p̂(x|x′) = ϕ(x)⊤Ũ(Ũ⊤GŨ)−1ÃŨ⊤ϕ(x′), (18)

where G is an (n − 1) × (n − 1) matrix whose (i, j)-
th element is given by

∫
Ω
k(x,xi)k(x,xj)dx. By using

Eq. (18), the cost function Ĉ can be written as

Ĉ = − 2

ñ− 1

ñ−1∑
i

ϕ(x̃i+1)
⊤Ũ(Ũ⊤GŨ)−1ÃŨ⊤ϕ(x̃i)

+
1

ñ

ñ∑
i

ϕ(x̃i)
⊤Ũ Ã⊤(Ũ⊤GŨ)−1ÃŨ⊤ϕ(x̃i).

(19)

Thus, we can select the hyper-parameters, θk and θr, by
evaluating the const function Ĉ for each parameter set and
selecting the parameter set θk, θr that minimizes Ĉ. The
evaluation of Ĉ can be performed by the m-hold cross val-
idation of Eq. (19) as follows:

1. Divide the time series {xt} into m subsets, denoted
by Xi (i = 1, 2, . . . ,m).

2. For i = 1, 2, . . . ,m:

(a) Apply the kernel DMD to all the time series ex-
cept Xi and compute Ã, Ũ and G.

(b) Evaluate the cost function Ĉ of Eq. (19) by Ã,
Ũ , G and Xi.

3. Average the values of Ĉ evaluated for X1, . . . , Xm.

- 372 -



−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x(1)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
(2

)

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

(a) Exact.
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(b) KDMD (A: optimal kernel).
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(c) KDMD (B: narrower kernel).
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(d) KDMD (C: wider kernel).

Figure 3: Real part of the sixth Koopman eigenfunction (∝ ei3[phase] ).
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(a) Exact.
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(b) KDMD (A: optimal kernel).
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(c) KDMD (B: narrower kernel).

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x(1)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x
(2

)

−1.2

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

(d) KDMD (C: wider kernel).

Figure 4: Real part of the fourteenth Koopman eigenfunction (∝ [amplitude] ×ei2[phase] ).

4. Numerical experiments

In order to confirm the validity of our method, we
perform a numerical experiment, in which we apply our
method to time series data genereted by a numerical sim-
ulation. As an example, we use two-dimensional time se-
ries data xt = [x

(1)
t , x

(2)
t ]⊤ depicted in Fig. 1(a,b),. This

time series is generated from a simple dynamical system
described by x

(1)
t = exp(ρt + sin 2φt) cos(φt + ρt +

sin 2φt), x
(2)
t = exp(ρt + sin 2φt) sin(φt + ρt + sin 2φt),

φt+1 = φt + π/15+ 0.1η
(1)
t , and ρt+1 = 0.9ρt +0.1η

(2)
t ,

where η
(1)
t , η

(1)
t are independent Gaussian white noise of

unit intensity. In this case, we can analytically derive the
Koopman eigenfunctions as shown in Figs. 2–4(a).

We show the evaluation of the cost function Ĉ in
Fig. 1(c), which is evaluated by 5-hold cross validation.
The parameter sets A, B and C shown in Fig. 1(c) repre-
sent optimal, narrower and wider kernel parameters, which
will be used as examples in the following discussion.

In Figs. 2–4, we show the eigenfunctions computed by
the kernel DMD, which correspond to dynamical variables
such as a phase or amplitude of oscillatory modes. In each
figure, we compare (a) the exact eigenfunction with (b–d)
the estimated eigenfunctions for the parameter sets (b) A,
(c) B and (d) C. In each of Figs. 2–4, we see that the re-
sults for the parameter set A nicely fits to the exact eigen-
function, while the result for the parameter set B (narrower
kernel) is noisy and overfitted, and the result for the pa-
rameter set C (wider kernel) is underfitted. Note that the
region with no data point is shown in white, because the
kernel DMD cannot estimate the eigenfunction in this re-
gion. From these results, we see that our method can find

the optimal hyper-parameter for this time series data.

5. Summary

We proposed a method for selecting two hyper-
parameters, θk, θr [4], which deeply affect the estimation
accuracy of Koopman eigenfunctions. In a numerical ex-
periment, we demonstrated the validity of our method.
By using the optimal hyper-parameters, we could estimate
eigenfunctions of the Koopman operator in high precision.
This result implies the importance of the optimal selection
of hyper-parameters of the kernel DMD.
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