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Abstract

In this study, the attracting forces to a steady states are
theoretically analyzed by using reactive powers in coupled
oscillator system, and are obtained by using a simulation.
The attracting forces are investigated in changing a cou-
pling parameter by using our theoretical method.

1. Introduction
We can observe synchronization phenomena in our body.

There are a synchronization of among pacemaker cells in
our heart, and the pulse synchronization phenomenon can
be observed in other nervus system, too. Therefore, we can
say that the synchronization phenomenon is one of most
important phenomena in this world. The synchronization
phenomena can be observed on electric circuits. Many
kinds of synchronization phenomena and characteristics of
the phenomena were reported by many researchers[2]. The
synchronization phenomena have been analyzed by many
methods. The averaging method is often used when the
synchronization phenomena are theoretically analyzed[2].
The method is hard to be used for transient state.

In this study, an attracting force, which two oscillators
are attracted to a synchronization state, are investigated by
using reactive powers of the system and simulations. Fur-
thermore, the attracting force is investigated in changing a
coupling parameter by using our theoretical method.

2. Circuit Model
Our circuit model is shown in Fig. 1. The van der Pol

oscillators are coupled by inductorLC. An inductor and a
capacitor of each van der Pol oscillator are shown as “L”
and “C” respectively. Characteristic of nonlinear negative
resistor ofk-th oscillator is shown asf (vk) in Eq. (1).

f (vk) = −g1vk + g3v3
k (k = 1 or 2) (1)

Circuit equations of this circuit are normalized by using Eq.
(2). The normalized equations are shown in Eq. (3).

i =

√
Cg1

3Lg3
xk, v =

√
g1

3g3
yk, t =

√
LCτ,

α =
L
Lc
, ε = g1

√
L
C
, δ =

g2
1

3g3
.

(2)

Figure 1: Circuit model.
dxk

dτ
= yk,

dyk

dτ
= −xk + α(xa − 2xk + xb) + ε(yk −

1
3

y3
k).

(If k = 1, a = N andb = 2.
If k = N, a = N − 1 andb = 1.
If 2 ≤ k ≤ N − 1, a = k− 1 andb = k+ 1.)

(3)

Whereα expresses a coupling parameter andε shows
nonlinearity of each oscillator.

2.1. Calculation of reactive power

An instantaneous electric power of each oscillators and
an instantaneous electric power of each inductor between
adjacent oscillators are calculated by which each oscilla-
tion wave shape is assumed as a sinusoidal wave. Each
currentxk (k = 1 or 2) and ezch voltageyk are assumed as
Eq. (4) Amplitudes of two oscillators are assumed as same
value. Angular frequencies of two oscillators are assumed
as same value, too.

xk = Xsin(ωτ + θk)
yk = ωXsin(ωτ + θk)

(4)

<Instantaneous electric power of the inductor in each
oscillator>

PLk =
δ

ε
xkyk (5)

<Instantaneous electric power of the capacitor in each
oscillator>

PCk =
δ

ε
yk

dyk

dτ
(6)

<Instantaneous electric power of the coupling inductor>

PLc(2,1) =
αδ

ε
(y1 − y2)(x1 − x2) (7)
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A normalized equation of a total instantaneous reactive
power are assumed as Eq. (8).

Prall =

2∑
k=1

(
δ

ε
xkyk +

δ

ε
yk

dyk

dτ

)
+
αδ

ε
(y1 − y2)(x1 − x2)

(8)

2.2. Derivation of angular frequency

In this system, we can consider that a power effect is
best when a reactive power, which can be assumed as sum
of instantaneous electric powers ofL, C and LC, is zero.
In other words, we can guess that this system is a steady
state when the reactive power is zero. In this study, an-
gular frequencies of the in-phase synchronizations and the
anti-phase synchronizations are obtained when the reactive
powers are zero.

Prall = 0 (9)

We want to calculate Eq. (8), but we can’t calculate the
equation without an oscillation angular frequencyω and an
amplitudeX . However, whenθ1 andθ2 are zero orθ1 is 0
andθ2 is π, ω can be obtained by using Eq. (9).
<Phase angles of the in-phase synchronization>

(θk = 0 (k = 1 or 2)) (10)

<Phase angles of the anti-phase synchronization>(
θ1 = 0
θ2 = π

)
(11)

Firstly, an in-phase synchronization frequencyωin and
an anti-phase synchronization frequencyωanti of this cir-
cuit are calculated by using the Eq. (9). A phase of each
oscillator is set asθk.
<Phase angles of the in-phase synchronization>

(θk = 0 (k = 1 or 2)) (12)

<Phase angles of the anti-phase synchronization>(
θ1 = 0
θ2 = π

)
(13)

The angular frequency of the in-phase synchronization is
achieved by which Eq. (12) is applied to Eq. (9).
<Anglular frequency of the in-phase synchronization>

ωin = 1 (14)

The angular frequency of the anti-phase synchronization is
achieved by which Eq. (13) is applied to Eq. (9).
<Anglular frequency of the anti-phase synchronization>

ωanti =
√

1+ 2α (15)

We assume that each angular frequencyω of each phase
difference (θ2 − θ1)[degree] exists betweenωin andωanti

and linearly vary betweenωin andωanti. Therefore,ω is
calculated by the following equation.

ω =
ωanti − ωin

180
× (θ2 − θ1) + ωin (16)

Next, amplitudeX is calculated. A total active power of
this circuit is obtained as a sum of powers of a nonlinear
negative resistor in each oscillator(see Eq. (17)).

Paall =

2∑
k=1

(−δd
2xk

dτ2
+
δ

3
d4xk

dτ4
) (17)

An amplitudeX of each oscillator is calculated, when
Paall is integrated in a period and the result is assumed zero
as follows. ∫ τ

0
Paalldτ = 0

X =
2
ω

(18)

We calculatePrall of each phase difference by using the
ω and theX.

3. Attracting Force

The attracting force is considered by using reactive pow-
ers and simulations.

3.1. Analyzing method by using reactive powers

We setθ = θ2 − θ1. Waveforms of reactive powers are
shown in Figs. (2)–(6) in changing the phase differenceθ.
We can understand that the amplitude is zero when theθ
is 0 degrees or 180 degrees. In other words, if a condition
of the system is a steady state, the amplitude of the reac-
tive power is zero, and if the condition is not the steady
state, the amplitude is not zero. Therefore, we think that
the system becomes unstable when a value, which the re-
active power is squared and integrated in a period, become
large. The value is expressed asPrT .

PrT =

∫ τ

0
Prall2dτ (19)

ThePrT is calculated in changing phase differenceθ and
shown in Figs. (7) and (8). The Fig. (7) shows results of
when theα is set as 0.05 and theε is 0.1, and the Fig. (8)
shows results of when theα is set as 0.1 and theε is 0.1, We
can understand thatPrT becomes a maximum value when
θ = 90 degrees. In under 90 degrees, when theθ becomes
small, PrT becomes small. In over 90 degrees, when the
θ becomes large,PrT becomes small. We assume thatθ
changes so that thePrT becomes small. In other words, the
θ is attracted to zero under 90 degrees, andθ is attracted to
180 degrees over 90 degrees. If change of thePrT is large
when theθ is a little changed, we think that the attracting
force is large. Therefore, we calculate gradient values of
the graph of thePrT . The gradient values are multiplied by
-1, because we want to show the results as negative values
in a domain of which theθ decreases to zero, and as positive
values in a domain of which theθ increases to 180 degrees.
The inversion gradient valuesg are shown in Figs. (9) and
(10)(see Eq. (20)).
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0 π 2π

Figure 2: Instantaneous reactive power Prall(θ=0 degrees).

0 π 2π

Figure 3: Instantaneous reactive power Prall(θ=45 de-
grees).

0 π 2π

Figure 4: Instantaneous reactive power Prall(θ=90 de-
grees).

0 π 2π

Figure 5: Instantaneous reactive power Prall(θ=135 de-
grees).

0 π 2π

Figure 6: Instantaneous reactive power Prall(θ=180 de-
grees).

12

0

P
rT

12

0

P
rT

Figure 7: Theoretical results ofPrT (α = 0.05 andε =
0.10).
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Figure 8: Theoretical results ofPrT (α=0.10ε=0.10).
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Figure 9: Theoretical results ofg(α=0.05ε=0.10).
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Figure 10: Theoretical results ofg(α=0.10ε=0.10).

g = −dPrT

dθ
(20)

We can think that the attracting force to stable state is
strongest when an absolute value of theg is a maximum
value. Therefore, we can understand that whenθ=45 de-
grees and 135 degrees attracting force become strongest.

3.2. Analyzing method by using simulations

An attracting force of eachθ is investigated by using a
simulator. An initial phase difference between two oscil-
lators is changed by which initial values of a voltage and
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a current of each oscillator are changed. A calculation
method of phase difference is shown as follows(see Fig.
11). In the Fig. 11, two sinusoidal waves show voltages
of two oscillators. Thea1 shows the first positive peak of a
oscillation waveform of an oscillator afterτ = 0, and thea2

expresses the second positive peak. Theb1 shows the first
positive peak of a oscillation waveform of another oscilla-
tor. Time ofa1, a2 andb2 are expressedτa1, τa2 andτb2.
Theθ is calculated by using Eq. (21).

θ =
τb2 − τa2

τa2 − τa1
× 360[degree] (21)

In this paper, we investigate how much theθ is changed
during 1τ for each the initial phase difference. A changing
value ofθ is shown as∆θ and calculated by Eq. (22).

∆θ =

(
τb3 − τa3

τa3 − τa2
− τb2 − τa2

τa2 − τa1

)
× 1
τa3 − τa2

× 360[degree]

(22)
The simulation results are shown in Figs. 12 and 13. The

horizontal axes show theθ, and the vertical axes show the
∆θ in Figs. 12 and 13. Therefore, this graph means an
attracting forceg which is strong when a absolute value of
∆θ is large value.

We can observe that the shapes of graphs of simulation
results are same shape with theoretical graphs, basically.

4. Comparison

Attracting forces are investigated in changing the cou-
pling parameterα by our using theoretical method. The
nonlinearityε is fixed as 0.1 and theα is set as 0.05, 0.10,
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Figure 11: A calculation method of a phase difference.
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Figure 12: Simulation result ofg(α = 0.05 andε = 0.10).

0.15 or 0.20. The theoretical results are shown in Fig. 14.
We can understand that the attracting forceg becomes large
as the coupling parameterα becomes large.

5. Conclusions

In this study, the attracting forces to a steady states were
theoretically analyzed by using reactive powers and were
obtained by a simulation in a coupled oscillator system.
The theoretical results and the simulation results were ob-
served same results, basically. Furthermore, we investi-
gated that the attracting force becomes strong as coupling
parameter is increased by using our theoretical method.
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Figure 13: Simulation result ofg(α = 0.10 andε = 0.10).
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Figure 14: Theoretical results in changing a coupling
parametar from 0.05 to 0.20 every 0.05.

- 388 -


