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Abstract—This paper presents how system dynamics
and system control equations for a quadcopter were derived
using an Arnold-type operator together with a moving co-
ordinate system and a stationary inertia coordinate system.
The Lagrangian Method is also discussed and simulation
results are illustrated.

1. Introduction

Although there are several designs, control system equa-
tions, and dynamic equations for quadcopters, such as [1],
unified methods to describe the dynamic equations of quad-
copters have yet to be established. Using the mathematical
foundation of rigid body dynamics provided by V. I. Arnold
[2], we apply Arnold’s operator in order to facilitate the
derivation of the dynamics of a quadcopter. Secondly, we
clarify the relationship between the Euler angles, the sta-
tionary inertia coordinate system and the moving coordi-
nate system for engineering problems. Finally, we illus-
trate the typical behavior of the quadcopter on MATLAB
numerical simulations. In the following, let R be the set of
real numbers and R” be the set of real number vectors.

2. Motion in a Moving Coordinate System

In this section, we detail the mathematical foundation
for describing the motion of a quadcopter based on [2]. It
should be noted that the method applied to describe the mo-
tion in Inohara et al. [3] is used for this study. The time
parameter ¢ for all the stated variables, such as r(¢), or (%),
etc., is omitted for convenience. We use the following no-
tation as [2] (Fig 1):

e; € w (i = 1,2,3) are the base vectors of a right-handed
Cartesian stationary coordinate system at the origin O;

E; € W (i = 1,2,3) are the base vectors of a right moving
coordinate system connected to the body at the center of
the mass O..

Definition 1 Let w and W be oriented euclidean spaces
(i.e. orthogonal spaces). A motion of W relative to w is

a smooth mapping depending on ¢:
B:W—>w, @))]

which preserves the metric and the orientation (Fig 1).
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Fig 1: Radius vector of a point with respect to stationary
(¢) and moving (Q) coordinate systems

Definition 2 A motion B is called a rotation if it takes the
origin of W to the origin of w (i.e. if B is a linear operator).

Definition 3 w is called a stationary coordinate system, W
a moving one, and g € w the radius-vector of a point mov-
ing relative to the stationary system; if

q=r+BQ 2)
0 is called the radius vector of the point relative to the mov-
ing system (Fig 1).

We express the “absolute velocity” ¢ in terms of the rel-
ative motion Q and the motion of the coordinate system B.
By differentiating with respect to ¢ in Eq. (2), we arrive at
Eq. (3) for the addition of velocities.

¢ =i+ BQ+ BQ. 3)

In order to carry the stationary frame e; (i = 1,2, 3) into
the moving frame E; (i = 1,2,3), we perform three rota-
tions (Fig 2):

1. Given an angle ¥ around the e axis, under this rota-
tion, e3 remains fixed and e, goes to Egz by means of
Eq. (5).

2. Given an angle 6 around the Egz axis, under this rota-
tion, E,” remains fixed and E;* goes to E]' by means
of Eq. (6).
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3. Given an angle ¢ around the E Il axis, under this rota-
tion, El‘l remains fixed and E;l goes to E3 by means
of Eq. (7).

After all three rotations are completed, e; has moved to E|,
and e; to E,; therefore, e3 moves to E3. The angles ¢, 0,
and ¢ are called the Tait-Bryan angles (one of the Euler
angle systems).

es E3?

E,
E?, Ey! B!
B
(2)

E/LE,

Fig 2: Rotations defining the Tait-Bryan angles

Here we describe an operator B, as follows:

B = R‘J/RHR(I)
cycld  cyslsp — sychp  cysbed + sysd
= | sych sysOsp +cycd  sysbep — cysg |, @
—s6 cls¢g clco
cosyy —siny O
Ry =| siny cosy 0 |, 5)
0 0 1
cosd 0O sind
Ry = o 1 0 | ©6)
—sind 0 cosé
1 0 0
R; = { 0 cos¢ —sing ] @)
0 sing cos¢

cy, sy, O, s, cp and s¢ denote cos s, siny, cosf, sinb,
cos ¢ and sin ¢, respectively. Hence, the base vectors of
the moving coordinate system generated by means of the
operator B are expressed as:

BE/| = cosy cos fe; + sin iy cos fe, — sin fes, ®)

BE, = (cosysinfsin ¢ — siny cos ¢)e;
+ (siny sin @sin ¢ + cos ¥ cos ¢)e,
+ cos 6 sin ges, ©)]

BE; = (cosysinfcos ¢ + siny sin ¢)e;
+ (siny sin 6 cos ¢ — cos Y sin ¢)e,

+ cos 8 cos ¢es. (10)

Since W is a moving coordinate system connected to the
body of a quadcopter, Q is at rest in W (i.e., @ = 0) and the
coordinate system W rotates (i.e., r = 0). In this case, the

motion of the point ¢ is a transferred rotation given by Eq.
(1.
g=7i+BQ=1#+B[Q Q] =i+ [BQ,BQ], (a1
where [ -, - ]: the vector product.
The vector Q € W is called the vector of angular velocity
in the quadcopter. In this case, € is expressed by:
Q=B"w (12)
The vector w € w is called the instantaneous angular
velocity given by Eq. (13).
w = yes + 0E;* + pE;". (13)
In numerous studies and texts, the angular velocity vector
(4, 0, @) of the Tait-Bryan angles [4], [5] is often referred to
as coordinate components E;, (i = 1,2, 3) on the base vec-
tors of the moving coordinate system. It must be stressed,
however, that the description given in Eq. (13) is correct.
Using the angular velocity vector of the Tait-Bryan angles
of Eq. (13), we can rewrite Eq. (11), as follows:
[ = F+ U (BQ) + 00 (BQ) + p—-(BQ). (14
=195 6 o2
Here, let k € w be the angular momentum of the quad-
copter in the stationary inertia coordinate system, H € W
be the angular momentum of the quadcopter in the moving
coordinate system, and I be the moment of inertia of the

quadcopter. Using operator B, we obtained the following
equations:

hZinBHEW,
H=IQew.

15)
(16)
In addition, let T € w be the torque of the quadcopter. We

obtain the time derivative of an angular momentum which
is equal to the moment, as follows:

%h =7= iBH:BT, IO+ [Q, H]

-T=0.
dt

A7)

Then, Q and  can be expressed in concrete terms by:

Q = (—ysin + @)E; + (fcosOsin¢ + O cos ¢)E,

+ (¢ cos @cos ¢ — Osin ) Es, (18)
and
Q = (—ist — ybco + H)E,
+ (JcOsdp—yfsOsp+irpclcd+Och—0psp)E,
+ (YcOch—yOsOcd—yrpcOsp—O0sp—0pcd)Ez, (19)
respectively.
A torque T of Eq. (17) is also given as:
T=[r, f]. (20)
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Here, r and f denote the position vector on which external
forces act and a vector of the external forces, respectively.
The coordinate components of an angular momentum of
the quadcopter are given as Eq. (21).

3
Hy =) HyE: @1
i=1
Then, we have the following equation:
(Hy, Hy, Hy)' = 1(Q1, @, Q)" 22)
The moment of inertia [ is also defined by
n In I Iz
I=\n I; b (23)
Ly In I

In this paper, for I , we assume that [;; = 0, and for k # .

3. Dynamic Model of a Quadcopter

The coordinate systems and free body diagram for the
quadcopter are shown in Figure 3. Based on the preced-
ing mathematical foundation, we can describe the dynamic
model of the quadcopter (Fig 3).

Fig 3: Coordinate systems and forces/moments acting on
the quadcopter (m =1.656 [kg], g = 9.80665 [m/s?], 111 =
0.01982 [kg - m] Ly = 0.01954[kg - m?],
0.03221 [kg - m?], L = 0.365 [m])

L =

Fi,(i =1,2,3,4) and M;,(i = 1,2,3,4) of Figure 3, rep-
resent vertical forces and moment, respectively. F;, (i =
1,2,3,4) and M;,(i = 1,2,3,4) are defined in a similar
manner [1]. Each motor of the quadcopter has an angular
speed w; and produces a vertical force F; according to:

Fi=kpiwly, i=1,2.3.4, 24)

Experimentation with a fixed motor in a steady state shows
that kr ~ 1.79 x 1077 r{ﬁ'nz. The motors also produce a
moment according to:

M,‘ = kMiwi,ﬁ, i= 1, 27 374’ (25)

The constant, &y, is determined to be approximately 4.38 ~
10722 by matching the performance of the simulation to
pm
the real system.
We establish the Lagrangian of the quadcopter Lag, as

follows:

1 1.
Lag = Sm(i, i) + S(IQ, Q) — mgrs, (26)

where (-, - ): the scalar product, r = (r1, 72, 73).
We also identify Lagrange’s equations for the quadcopter
(k=1,2,3), as follows:

d dLag
dt dwy

= (BL(F4 - F1)E\, BE))
+ (BL(F, — F3)E,, BEy)

+ (B(My — My — M5 + My)E3, BEy), (27)
d 0Lag OLag 4
— - =(B F;),ep). 28
o an = (Zl )vex) (28)

We summarize the vector equations of the quadcopter, as
follows:

IO+ [Q,IQ) = L(Fs — F)E, + L(F, — F3)E,

+ (M — My — M3 + My)E3, (29)
4

m# = —mges + B() | F)), (30)
P

IE; = IE| + InEs + I3 E;, 3D

where m: the gross weight of the quadcopter.

Since the operator B states variables ©Q and € are ex-
pressed as the functions of (if, 6, ¢, ¥, 6, ¢), the state equa-
tion of the quadcopter can be rewritten as equations of the
function of (i, 6, ¢, ¥, 6, ).

X =F(x)+Gx,u), (32)
= (,0.,9.,6,0), (33)
= (6, 66, 6, 01, 56, 89, ), (34)
= (W1 Wipps Wigss Wiga)s (35
flﬁ(lg/’ é’ (_b’ 0, ¢)
f@('#’ Q’ g?a 9’ ¢)
F(x) = f¢(¢» H;p(p’ 0, ¢) , (36)
0
¢
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122133(si{12 e—l)T]B Gy
[ 1331122 ]BG9

T
I Inn I33(sin® 6—1) ]BG¢
OT

(37

[0']
[0"]

The variational equation (38) that can be used to control the
quadcopter is described by

d
d—téx = DF(xy) - 0x + Bgu,

(38)
where DF(xy) and x( denote the Jacobian of F(x) and a
driving point of x. In particular, fy, fs, and fs in F(x)
are easily obtained using Maple symbolic computations on
B, B, and B(,,, as follows:

ng = [—1y; cos ¢ cos Ok, —133L cos Osin pkpy + Ipy cos ¢ cos Ok,

L33 L cos 0sin ¢pkps + Iy cos ¢ cos Okyz, —Iy cos ¢ cos HkM4],(39)

By = [~ sin @kant, oo sin gk + I3 L cos gkpa,
Iy sin ¢ky3 — I33L cos Pkrs, — Iy sin dkaga],(40)

Bg¢ = [-I»nI3L sin® Okpy — 1111, cos ¢ cos 6sin Okyyy + InpIs3Lkpy,
1,11 cos ¢ cos O sinOkyn — 111133 L sin ¢ cos 0 sin Ok,
1,11, cos ¢ cos O sin Okyz + 111133 L sin ¢ cos 0 sin Okp3,

122133L Sil’l2 0](]:4 - I] 1122 COS¢COS€Sil‘l HkM4 - 122[33Lk1:4].(41)

4. Simulation of Motion of a Quadcopter

By means of numerical computations on MATLAB with
ode45 solver ¢ [s] € [0 3] applied to Eq. (30) and Eq. (32),
an example of typical quadcopter flight behavior without
any controls is obtained. This behavior includes 3m hov-
ering, forward moving and descending, and crashing. The
simulation results illustrated in Figure 4 and Figure 5 are
obtained. The initial values are set as y = 6 = ¢ =
O[rad/s], ¥ = 6 = ¢ = 0[rad], ri = r, = 0[m], 7,
rh =73 = 0[m/s], rn =3[ml, wm = Wz = Wus =
4760 [rpm], and wy, = 4770 [rpm]. Notice that the nu-
merical computation of Eq. (30) is carried out by using the
computation results of Eq. (32), together with interpola-
tions of (), 6(¢) and ¢(z).

5. Conclusion

The following results are obtained:

(1) We have derived the system dynamics and system con-
trol equations for the quadcopter by using the operator B
together with two coordinate systems, w and W. In addi-
tion, we have described Lagrange’s equations for the quad-
copter.

(2) We have reliably illustrated the typical behavior of the
quadcopter using numerical simulations on MATLAB with
an ode45 solver.
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Rotational behavior of the quadcopter

— vy

()
=) [|—9®
< 1T
£
3
o
£
s 05f
l
S
I~
~a
&
é‘ 0 \\’
-0.5
0.5 1 15 2 25 3

Time [s]

Fig 4: Simulation results of Tait-Bryan angles

Translational behavior of the quadcopter
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Fig 5: Simulation results for position of motion
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