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Abstract—This paper presents how system dynamics
and system control equations for a quadcopter were derived
using an Arnold-type operator together with a moving co-
ordinate system and a stationary inertia coordinate system.
The Lagrangian Method is also discussed and simulation
results are illustrated.

1. Introduction

Although there are several designs, control system equa-
tions, and dynamic equations for quadcopters, such as [1],
unified methods to describe the dynamic equations of quad-
copters have yet to be established. Using the mathematical
foundation of rigid body dynamics provided by V. I. Arnold
[2], we apply Arnold’s operator in order to facilitate the
derivation of the dynamics of a quadcopter. Secondly, we
clarify the relationship between the Euler angles, the sta-
tionary inertia coordinate system and the moving coordi-
nate system for engineering problems. Finally, we illus-
trate the typical behavior of the quadcopter on MATLAB
numerical simulations. In the following, let R be the set of
real numbers and Rn be the set of real number vectors.

2. Motion in a Moving Coordinate System

In this section, we detail the mathematical foundation
for describing the motion of a quadcopter based on [2]. It
should be noted that the method applied to describe the mo-
tion in Inohara et al. [3] is used for this study. The time
parameter t for all the stated variables, such as r(t), orΩ(t),
etc., is omitted for convenience. We use the following no-
tation as [2] (Fig 1):
ei ∈ w (i = 1, 2, 3) are the base vectors of a right-handed
Cartesian stationary coordinate system at the origin O;
Ei ∈ W (i = 1, 2, 3) are the base vectors of a right moving
coordinate system connected to the body at the center of
the mass Oc.

Definition 1 Let w and W be oriented euclidean spaces
(i.e. orthogonal spaces). A motion of W relative to w is
a smooth mapping depending on t:

B : W → w, (1)

which preserves the metric and the orientation (Fig 1).

Fig 1: Radius vector of a point with respect to stationary
(q) and moving (Q) coordinate systems

Definition 2 A motion B is called a rotation if it takes the
origin of W to the origin of w (i.e. if B is a linear operator).

Definition 3 w is called a stationary coordinate system, W
a moving one, and q ∈ w the radius-vector of a point mov-
ing relative to the stationary system; if

q = r + BQ (2)

Q is called the radius vector of the point relative to the mov-
ing system (Fig 1).

We express the “absolute velocity” q̇ in terms of the rel-
ative motion Q and the motion of the coordinate system B.
By differentiating with respect to t in Eq. (2), we arrive at
Eq. (3) for the addition of velocities.

q̇ = ṙ + ḂQ + BQ̇. (3)

In order to carry the stationary frame ei (i = 1, 2, 3) into
the moving frame Ei (i = 1, 2, 3), we perform three rota-
tions (Fig 2):

1. Given an angle ψ around the e3 axis, under this rota-
tion, e3 remains fixed and e2 goes to E−2

2 by means of
Eq. (5).

2. Given an angle θ around the E−2
2 axis, under this rota-

tion, E−2
2 remains fixed and E−2

1 goes to E−1
1 by means

of Eq. (6).
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3. Given an angle ϕ around the E−1
1 axis, under this rota-

tion, E−1
1 remains fixed and E−1

3 goes to E3 by means
of Eq. (7).

After all three rotations are completed, e1 has moved to E1,
and e2 to E2; therefore, e3 moves to E3. The angles ψ, θ,
and ϕ are called the Tait-Bryan angles (one of the Euler
angle systems).

Fig 2: Rotations defining the Tait-Bryan angles

Here we describe an operator B, as follows:

B = RψRθRϕ

=

 cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sθ cθsϕ cθcϕ

, (4)

Rψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

, (5)

Rθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

, (6)

Rϕ =

 1 0 0
0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

. (7)

cψ, sψ, cθ, sθ, cϕ and sϕ denote cosψ, sinψ, cos θ, sin θ,
cos ϕ and sin ϕ, respectively. Hence, the base vectors of
the moving coordinate system generated by means of the
operator B are expressed as:

BE1 = cosψ cos θe1 + sinψ cos θe2 − sin θe3, (8)

BE2 = (cosψ sin θ sin ϕ − sinψ cos ϕ)e1

+ (sinψ sin θ sin ϕ + cosψ cos ϕ)e2

+ cos θ sin ϕe3, (9)

BE3 = (cosψ sin θ cos ϕ + sinψ sin ϕ)e1

+ (sinψ sin θ cos ϕ − cosψ sin ϕ)e2

+ cos θ cos ϕe3. (10)

Since W is a moving coordinate system connected to the
body of a quadcopter, Q is at rest in W (i.e., Q̇ = 0) and the
coordinate system W rotates (i.e., r = 0). In this case, the

motion of the point q is a transferred rotation given by Eq.
(11).

q̇ = ṙ + ḂQ = ṙ + B[Ω,Q] = ṙ + [BΩ, BQ], (11)

where [ · , · ]: the vector product.
The vectorΩ ∈ W is called the vector of angular velocity

in the quadcopter. In this case, Ω is expressed by:

Ω = BTω. (12)

The vector ω ∈ w is called the instantaneous angular
velocity given by Eq. (13).

ω = ψ̇e3 + θ̇E−2
2 + ϕ̇E−1

1 . (13)

In numerous studies and texts, the angular velocity vector
(ψ̇, θ̇, ϕ̇) of the Tait-Bryan angles [4], [5] is often referred to
as coordinate components Ei, (i = 1, 2, 3) on the base vec-
tors of the moving coordinate system. It must be stressed,
however, that the description given in Eq. (13) is correct.
Using the angular velocity vector of the Tait-Bryan angles
of Eq. (13), we can rewrite Eq. (11), as follows:

q̇ = ṙ + ψ̇
∂

∂ψ
(BQ) + θ̇

∂

∂θ
(BQ) + ϕ̇

∂

∂ϕ
(BQ). (14)

Here, let h ∈ w be the angular momentum of the quad-
copter in the stationary inertia coordinate system, H ∈ W
be the angular momentum of the quadcopter in the moving
coordinate system, and Î be the moment of inertia of the
quadcopter. Using operator B, we obtained the following
equations:

h = Îω = BH ∈ w, (15)
H = ÎΩ ∈W. (16)

In addition, let τ ∈ w be the torque of the quadcopter. We
obtain the time derivative of an angular momentum which
is equal to the moment, as follows:

d
dt

h = τ =
d
dt

BH = BT, ÎΩ̇ + [Ω,H] − T = 0. (17)

Then, Ω and Ω̇ can be expressed in concrete terms by:

Ω = (−ψ̇ sin θ + ϕ̇)E1 + (ψ̇ cos θ sin ϕ + θ̇ cos ϕ)E2

+ (ψ̇ cos θ cos ϕ − θ̇ sin ϕ)E3, (18)

and

Ω̇ = (−ψ̈sθ − ψ̇θ̇cθ + ϕ̈)E1

+ (ψ̈cθsϕ−ψ̇θ̇sθsϕ+ψ̇ϕ̇cθcϕ+θ̈cϕ−θ̇ϕ̇sϕ)E2

+ (ψ̈cθcϕ−ψ̇θ̇sθcϕ−ψ̇ϕ̇cθsϕ−θ̈sϕ−θ̇ϕ̇cϕ)E3, (19)

respectively.
A torque τ of Eq. (17) is also given as:

τ = [r, f ]. (20)
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Here, r and f denote the position vector on which external
forces act and a vector of the external forces, respectively.
The coordinate components of an angular momentum of
the quadcopter are given as Eq. (21).

HA =

3∑
i=1

HiAEi. (21)

Then, we have the following equation:

(H1,H2,H3)T = Î(Ω1,Ω2,Ω3)T. (22)

The moment of inertia Î is also defined by

Î =
 I11 I12 I13

I21 I22 I23
I31 I32 I33

. (23)

In this paper, for Î, we assume that Ikl = 0, and for k , l.

3. Dynamic Model of a Quadcopter

The coordinate systems and free body diagram for the
quadcopter are shown in Figure 3. Based on the preced-
ing mathematical foundation, we can describe the dynamic
model of the quadcopter (Fig 3).

Fig 3: Coordinate systems and forces/moments acting on
the quadcopter (m =1.656 [kg], g = 9.80665 [m/s2], I11 =

0.01982 [kg · m2], I22 = 0.01954 [kg · m2], I33 =

0.03221 [kg · m2], L = 0.365 [m])

Fi, (i = 1, 2, 3, 4) and Mi, (i = 1, 2, 3, 4) of Figure 3, rep-
resent vertical forces and moment, respectively. Fi, (i =
1, 2, 3, 4) and Mi, (i = 1, 2, 3, 4) are defined in a similar
manner [1]. Each motor of the quadcopter has an angular
speed ωi and produces a vertical force Fi according to:

Fi = kFiω
2
Mi, i = 1, 2, 3, 4, (24)

Experimentation with a fixed motor in a steady state shows
that kF ≈ 1.79 × 10−7 N

rpm2 . The motors also produce a
moment according to:

Mi = kMiω
2
Mi, i = 1, 2, 3, 4, (25)

The constant, kM , is determined to be approximately 4.38 ≈
10−9 Nm

rpm2 by matching the performance of the simulation to
the real system.

We establish the Lagrangian of the quadcopter Lag, as
follows:

Lag =
1
2

m(ṙ, ṙ) +
1
2

(ÎΩ,Ω) − mgr3, (26)

where ( · , · ): the scalar product, r = (r1, r2, r3).
We also identify Lagrange’s equations for the quadcopter
(k = 1, 2, 3), as follows:

d
dt
∂Lag
∂ωk

= (BL(F4 − F1)E1, BEk)

+ (BL(F2 − F3)E2, BEk)
+ (B(M1 − M2 − M3 + M4)E3, BEk), (27)

d
dt
∂Lag
∂ṙk

− ∂Lag
∂rk

= (B(
4∑

i=1

Fi), ek). (28)

We summarize the vector equations of the quadcopter, as
follows:

ÎΩ̇ + [Ω, ÎΩ] = L(F4 − F1)E1 + L(F2 − F3)E2

+ (M1 − M2 − M3 + M4)E3, (29)

mr̈ = −mge3 + B(
4∑

i=1

Fi), (30)

ÎEk = I1k E1 + I2k E2 + I3k E3, (31)

where m: the gross weight of the quadcopter.
Since the operator B states variables Ω and Ω̇ are ex-

pressed as the functions of (ψ̇, θ̇, ϕ̇, ψ, θ, ϕ), the state equa-
tion of the quadcopter can be rewritten as equations of the
function of (ψ̇, θ̇, ϕ̇, ψ, θ, ϕ).

ẋ = F(x) +G(x,u), (32)

xT = (ψ̇, θ̇, ϕ̇, ψ, θ, ϕ), (33)

δxT = (δψ̇, δθ̇, δϕ̇, δψ, δθ, δϕ, ), (34)

uT = (ω2
M1, ω

2
M2, ω

2
M3, ω

2
M4), (35)

F(x) =



fψ(ψ̇, θ̇, ϕ̇, θ, ϕ)
fθ(ψ̇, θ̇, ϕ̇, θ, ϕ)
fϕ(ψ̇, θ̇, ϕ̇, θ, ϕ)

ψ̇
θ̇
ϕ̇


, (36)
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BG =



[ 1
I22I33(sin2 θ−1)

]BT
Gψ

[ 1
I33I22

]BT
Gθ

[ 1
I11I22I33(sin2 θ−1)

]BT
Gϕ

[0T]
[0T]
[0T]


. (37)

The variational equation (38) that can be used to control the
quadcopter is described by

d
dt
δx = DF(x0) · δx + BGu, (38)

where DF(x0) and x0 denote the Jacobian of F(x) and a
driving point of x. In particular, fψ, fθ, and fϕ in F(x)
are easily obtained using Maple symbolic computations on
BT

Gψ, BT
Gθ, and BT

Gϕ, as follows:

BT
Gψ = [−I22 cos ϕ cos θkM1,−I33L cos θ sin ϕkF2 + I22 cos ϕ cos θkM2,

I33L cos θ sin ϕkF3 + I22 cos ϕ cos θkM3,−I22 cos ϕ cos θkM4],(39)

BT
Gθ = [−I22 sin ϕkM1, I22 sin ϕkM2 + I33L cos ϕkF2,

I22 sin ϕkM3 − I33L cos ϕkF3,−I22 sin ϕkM4],(40)

BT
Gϕ = [−I22I33L sin2 θkF1 − I11I22 cos ϕ cos θ sin θkM1 + I22I33LkF1,

I11I22 cos ϕ cos θ sin θkM2 − I11I33L sin ϕ cos θ sin θkF2,

I11I22 cos ϕ cos θ sin θkM3 + I11I33L sin ϕ cos θ sin θkF3,

I22I33L sin2 θkF4 − I11I22 cos ϕ cos θ sin θkM4 − I22I33LkF4].(41)

4. Simulation of Motion of a Quadcopter

By means of numerical computations on MATLAB with
ode45 solver t [s] ∈ [0 3] applied to Eq. (30) and Eq. (32),
an example of typical quadcopter flight behavior without
any controls is obtained. This behavior includes 3m hov-
ering, forward moving and descending, and crashing. The
simulation results illustrated in Figure 4 and Figure 5 are
obtained. The initial values are set as ψ̇ = θ̇ = ϕ̇ =
0 [rad/s], ψ = θ = ϕ = 0 [rad], r1 = r2 = 0 [m], ṙ1 =

ṙ2 = ṙ3 = 0 [m/s], r3 = 3 [m], ωM1 = ωM3 = ωM4 =

4760 [rpm], and ωM2 = 4770 [rpm]. Notice that the nu-
merical computation of Eq. (30) is carried out by using the
computation results of Eq. (32), together with interpola-
tions of ψ(t), θ(t) and ϕ(t).

5. Conclusion

The following results are obtained:

(1) We have derived the system dynamics and system con-
trol equations for the quadcopter by using the operator B
together with two coordinate systems, w and W. In addi-
tion, we have described Lagrange’s equations for the quad-
copter.

(2) We have reliably illustrated the typical behavior of the
quadcopter using numerical simulations on MATLAB with
an ode45 solver.
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